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Summary

Safe nautical charts require a carefully designed bathymetric survey policy,
especially in shallow sandy seas that potentially have dynamic sea floor pat-
terns. Bathymetric resurveying at sea is a costly process with limited resources,
though. A pattern on the sea floor known as tidal sand waves is clearly present
in bathymetric surveys, endangering navigation in the Southern North Sea be-
cause of the potential dynamics of this pattern. An important factor in an
efficient resurvey policy is the type and size of sea floor dynamics. The un-
certainties of measurement and interpolation associated with the depth values
enable the statistical processing of a time series of surveys, using deformation
analysis. Currently, there is no procedure available that satisfies the Royal
Netherlands Navy requirements. Therefore, a deformation analysis procedure
is designed, implemented and tested in such a way that the procedure works on
bathymetric data and satisfies the Royal Netherlands Navy requirements. Also,
it is necessary to develop a procedure that translates the results into changes of
the resurvey policy, taking into account their confidence intervals.

To describe the sea floor statistically, we assume the sea floor to consist
of a spatial trend function (or characterization) and a residual function (or
dispersion). Such a description is called a representation. The covariances
between positions are expressed in a covariance function, based on the residual
function. The covariance function is used by Kriging, an interpolation procedure
that propagates the variances and covariances of the data points to variances of
the interpolated values. This approach is used widely for spatial analyses, like
the interpolation of a bathymetric data set.

The method that we propose uses Kriging to produce a time series of grids
of depth values and their variances. Subsequently, it uses deformation analysis,
a statistical procedure based on testing theory. Our application of deformation
analysis is particularly aimed at the detection of dynamics in areas with tidal
sand waves, resulting in parameter estimates for the sea floor dynamics, and
their uncertainty. We apply the method to sea floor representations both with
and without a sand wave pattern. A test scenario is set up, consisting of a
survey of an existing area in the Southern North Sea, for which dynamics are
simulated. The results show that the proposed method detects different types
of sea floor dynamics well, leading to satisfactory estimates of the corresponding
parameters.

We show results for the anchorage area Maas West near the Port of Rotter-
dam, the Netherlands first. The area is divided into 18 subareas. The results
show that a sand wave pattern is detected for most of the subareas, and a shore-
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ward migration is detected for a majority of them. The estimated migration
rates of the sand waves are up to 7.5 m/yr, with a 95% confidence interval that
depends on the regularity of the pattern. The results are in confirmation with
previously observed migration rates for the Southern North Sea, and with an
idealized process-based model.

Thereafter, we analyze several other areas for which a time series of surveys is
available in the bathymetric archives of the Netherlands Hydrographic Service,
to study the spatial variations in sea floor dynamics. We present results for
several sand wave areas and a single flat area. In some of those areas, dredging
takes place, to guarantee minimum depths. The results indicate sand wave
migration in areas close to the coast, and bed level changes of the order of
decimeters. The dominant wavelength of the sand waves varies. We compare
our results to literature of the same sand wave areas, in which we find similar
migration rates, and different wavelengths.

By formulating four indicators, recommendations are made for the resurvey
policy on the Belgian and Netherlands Continental Shelf. These indicators fol-
low from the estimates for sea floor dynamics. We present a concept for the
shallowest likely depth surface, on which we base two of the indicators. The
other two indicators act as a warning: they quantify the potentially missed
dynamics, which makes the procedure more robust in case of complicated mor-
phology. We show clear differences in recommended resurvey frequency between
the five analyzed regions.

We conclude that the designed method is able to use a time series of bathy-
metric surveys for the estimation of sea floor dynamics in a satisfactory way.
Those dynamics may be present on the scale of the sea floor, it may be a local
effect, or it may be due to a tidal sand wave pattern. Also, the results are suc-
cessfully reduced to a set of four indicators, used to improve a resurvey policy.
Based on these conclusions, we formulate recommendations on the extrapola-
tion of the results in space and time, on potential adaptations to the designed
procedure, and on implementation of the procedure.



Samenvatting

Veilige zeekaarten vereisen een nauwkeurig vormgegeven bathymetrisch opne-
mingsbeleid, met name in ondiepe, zandige zeeën die mogelijk dynamische zee-
bodempatronen vertonen. Bathymetrisch opnemen op zee is echter een kost-
baar proces, waarvoor beperkte middelen beschikbaar zijn. Het gevaarlijk-
ste patroon voor navigatie in de Zuidelijke Noordzee zijn de getijdezandgol-
ven, die duidelijk aanwezig zijn in bathymetrische opnemingen, en die poten-
tieel dynamisch gedrag vertonen. Type en grootte van zeebodemdynamiek
vormen daarmee een belangrijke factor in een efficiënt opnemingsbeleidsplan.
Het verbinden van meet- en interpolatieonzekerheden aan dieptewaarden maakt
het mogelijk om een tijdsserie opnemingen statistisch te verwerken met de-
formatieanalyse. Omdat er op dit moment geen procedure beschikbaar is die
aan de eisen van de Koninklijke Marine voldoet, wordt een procedure voor de-
formatieanalyse ontworpen, gëımplementeerd en beproefd, die afgestemd is op
bathymetrische data en die aan deze eisen voldoet. Ook is het nodig om een pro-
cedure te ontwerpen om de resultaten in het opnemingsbeleidsplan op te nemen
die gebruik maakt van de betrouwbaarheidsintervallen van de resultaten.

Een statistische zeebodembeschrijving veronderstelt dat deze bestaat uit
een ruimtelijke trendfunctie (of karakterisering) en een restfunctie (of disper-
sie). Zo’n beschrijving wordt een representatie genoemd. De ruimtelijke covari-
anties worden uitgedrukt in een covariantiefunctie, gebaseerd op de restfunctie.
Een toepassing van de covariantiefunctie is Krigen, een interpolatieprocedure
die de varianties en covarianties van de data voortplanten naar varianties van
de gëınterpolateerde waarden. Deze benadering wordt algemeen gebruikt voor
ruimtelijke analyses, zoals de interpolatie van een bathymetrische dataset.

De voorgestelde methode gebruikt Krigen om een tijdsserie met grids van
dieptewaarden en hun varianties te produceren. Vervolgens gebruikt de methode
deformatieanalyse, een statistische procedure gebaseerd op toetsingstheorie. De
toepassing van deformatieanalyse is in het bijzonder gericht op het vinden van
dynamiek in gebieden met getijdezandgolven, resulterend in parameterschattin-
gen voor zeebodemdynamiek en hun onzekerheid. De methode wordt toegepast
op zeebodemrepresentaties met en zonder zandgolfpatroon. We testen een sce-
nario dat bestaat uit een grid met werkelijke diepten in de Zuidelijke Noordzee,
en gesimuleerde dynamiek. De resultaten tonen aan dat de voorgestelde me-
thode de diverse typen zeebodemdynamiek goed schat, waarbij de schattingen
voor de corresponderende parameters naar tevredenheid zijn.
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Eerst presenteren we resultaten voor het ankergebied Maas West nabij de
haven van Rotterdam. Het gebied is daartoe opgedeeld in 18 deelgebieden. De
resultaten tonen aan dat een zandgolfpatroon gedetecteerd wordt voor de meeste
deelgebieden, en voor de meeste van deze deelgebieden wordt een kustwaartse
migratie gevonden. De schattingen voor de snelheid van de zandgolfmigratie
lopen op tot 7.5 m/jr, met een 95% betrouwbaarheidsinterval dat afhangt van
de regelmaat van het patroon. De resultaten bevestigen eerder waargenomen
migratiesnelheden voor de Zuidelijke Noordzee, en een gëıdealiseerd procesge-
baseerd model.

Vervolgens analyseren we een aantal andere gebieden waarvoor een tijdsserie
opnemingen beschikbaar is in de bathymetrische archieven van de Dienst der
Hydrografie, zodat de ruimtelijke variatie in zeebodemdynamiek duidelijk wordt.
We presenteren resultaten voor een aantal gebieden met zandgolven, en voor
één vlak gebied. Sommige van de gebieden worden door baggeren op diepte
gehouden. De resultaten geven aan dat zandgolven migreren in gebieden nabij
de kust, en dat diepteveranderingen plaatsvinden in de orde van grootte van
decimeters. De dominante golflengte van de zandgolven varieert. We vergelijken
de resultaten met de bestaande literatuur over deze zandgolfgebieden, en vinden
vergelijkbare migratiesnelheden en afwijkende golflengten.

Het fomuleren van vier indicatoren maakt het mogelijk om aanbevelingen te
doen voor het opnemingsbeleidsplan voor het Nederlands en Belgisch Continen-
taal Plat. De indicatoren volgen uit de schattingen voor zeebodemdynamiek.
We presenteren het concept van het ondiepste te verwachten diepteoppervlak,
waar we twee indicatoren op baseren. De beide andere indicatoren hebben een
waarschuwende functie: ze kwantificeren de potentieel gemiste dynamiek, en
maken daarmee de procedure robuuster voor gecompliceerde morfologie. We
geven duidelijke verschillen aan in aanbevolen heropnemingsfrequentie tussen
de vijf geanalyseerde regio’s.

We concluderen dat de ontworpen methode in staat is naar tevredenheid
een tijdsserie bathymetrische opnemingen te gebruiken voor het schatten van
zeebodemdynamiek. Zulke dynamiek kan aanwezig zijn op de schaal van de
zeebodem, een lokaal effect, of veroorzaakt door een patroon getijzandgolven.
Ook zijn de resultaten naar tevredenheid verder gereduceerd tot vier indicatoren
voor de verbetering van het opnemingsbeleidsplan. Op basis van deze conclusies
formuleren we aanbevelingen om de resultaten te extrapoleren in ruimte en
tijd, om aanpassingen te overwegen in de ontworpen procedure, en voor de
implementatie van de procedure.



Chapter 1

Introduction

1.1 Nautical charting

The Hydrographic Service of the Royal Netherlands Navy (RNLN) is the Dutch
government office that is responsible for nautical surveying and charting, in
order to enable safe navigation at sea. To ensure the presence of accurate infor-
mation on e.g. depth on board, the usage of official nautical charts is mandatory
for many types of ships. Nautical charts are based on bathymetric surveys at
sea, i.e. sets of measurements of the depth of the sea floor. A bathymetric survey
at sea is costly because of both the large associated expenses and the variety
of complicated observations that are necessary. Another complication is that
bathymetric information becomes outdated after limited time, because of the
changing nature of the sea floor in many sandy shallow seas.

The sea floor of many parts of sandy shallow seas is covered by a variety
of rhythmic features. From a nautical point of view, tidal sand waves, which
are characterized by wavelengths of hundreds of meters and amplitudes of up
to several meters, are the most relevant of these features. As shown in Fig-
ure 1.1, they are widely present on the Belgian and Netherlands Continental
Shelf (BNLCS). Tidal sand waves often migrate or grow, which makes sea floor
dynamics a relevant factor for resurvey planning.

1.2 Survey plan design

To manage bathymetric surveys efficiently, it is necessary to plan the deployment
of the two hydrographic survey vessels of the RNLN according to a carefully
designed survey policy. Survey policies are made worldwide [NOAA Office of
Coast Survey, 2008; De Oliveira et al., 2007; Dehling, 2006; Whatrup et al.,
2005]. The RNLN policy, given in Figure 1.2, assigns a resurvey frequency to
all areas of the BNLCS under RNLN responsibility.

Over the last decades, several attempts have been made to quantify dynamics
of the Southern North Sea to optimize the resurvey policy [Langeraar, 1966;
Scheele, 1986; Velberg, 1993; De Haan, 1996; Gillissen and Pulles, 1996; Van
Wijk, 2000]. Because of the complicated nature of the dynamics of the sea
floor, the limited quality and availability of bathymetric data, and the large size
of the data sets, those attempts have not led to significant changes. Over the
past years, it has not been possible to maintain the resurvey frequencies in the
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Figure 1.1: The presence of tidal sand waves in the Southern North Sea (Figure
courtesy of H. H. van der Veen and B. Perez-Lapeña)
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Figure 1.2: The 2003 resurvey policy of the Hydrographic Service of the Royal
Netherlands Navy, for the areas of the Belgian and Netherlands Continental Shelf un-
der its responsibility. In the so-called Selected Track for deep draught vessels on the
Belgian Continental Shelf, Critical areas are defined that have a resurvey frequency
of once every two years. The Hydrographic Service does not survey the areas that
are under responsibility of Rijkswaterstaat North Sea, or their coastal directorates.
(Figure courtesy of Lt I.J. Nijman)
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current resurvey policy, due to both technical and operational reasons. This
makes reductions in frequency inevitable. A risk assessment study of the RNLN
[Dienst der Hydrografie, 2007] pointed out the importance of sea floor dynamics
for adaptations in resurvey policy.

1.3 Detection of sea floor dynamics

Various approaches exist for the analysis of a series of bathymetric surveys to
detect and quantify sea floor deformations. Literature overviews have been pub-
lished by Wever [2004] and Van Maren [1998]. We characterize these methods
by three properties:

• number of spatial dimensions: zero-dimensional methods consider points,
one-dimensional methods lines, and two-dimensional methods surfaces;

• role of time: considering discrete differences between the survey moments,
or assuming continuous dynamics, like linear trends;

• interpretation of the data: stochastic estimates include a confidence in-
terval to describe their uncertainty, while deterministic methods deliver
exact values, ignoring random noise from the measurement processes and
other sources.

The oldest documented analyses of a time series of bathymetric data were done
by Jones et al. [1965], Salsman et al. [1966] and Langeraar [1966]. They used
graphical techniques, like the comparison of crest positions, profiles, or bathy-
metric maps. Since then, almost all applied methods have used one or two
spatial dimensions, which means that they study depth change in relation to
the spatial variation of depth and its dynamics. Bowyer [1992] was the first to
document a zero-dimensional analysis of the dynamics of each point of the sea
floor in an area. He subtracted depth values of two surveys at equal positions.

The detection of continuous dynamics in marine morphology, instead of dif-
ferences between bathymetric surveys, was first done by Lanckneus et al. [1994].
It was not until Dorst [2003] and Wüst [2004] that several surveys were used
to estimate trends in a zero-dimensional analysis on grids of points. This new
approach to the role of time enables the connection with the physical processes
behind those dynamics.

The confrontation of deterministic results with general error models has
been done since Terwindt [1971]. Moreover, Salsman et al. [1966] already used
markers on the sea floor to correct for positioning errors. A next step was to
subtract the a priori measurement-related variance from the total variance of
depth differences between surveys. The result is considered to be the change
in depth, as done by Smith [1986] and later by Velberg [1993]. However, the
application of stochastic approaches, which take maximum advantage of the
availability of uncertainty for each individual depth, started with Dorst [2003]
and Wüst [2004].
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Table 1.1: Offshore rhythmic bed forms in shallow seas with sandy beds, including
typical wavelength, maximum height and typical migration rate.

wavelength max. height migration rate
Ripples ∼1 m 0.01 m ∼1 m/hour
Megaripples ∼10 m 0.1 m ∼1 m/day
Tidal sand waves ∼500 m 5 m ∼10 m/year
Long bed waves ∼1.5 km 5 m unknown
Tidal sand banks ∼6 km 10 m ∼1 m/year

1.4 Tidal sand waves

Rhythmic morphological patterns are abundant in shallow seas with sandy beds
like the Southern North Sea, as seen in Figure 1.1. Changes in their height and
position have been reported frequently [Wright, 1992; Terwindt, 1971], possibly
endangering navigation through busy shipping lanes. Such patterns exist on
several scales [Knaapen et al., 2001; Knaapen, 2004] that are given in Table 1.1.
We focus on tidal sand waves, as they form the only pattern that could endanger
navigation at sea, due to the combination of their significant height and con-
siderable migration rate. An example of their presence is given in Figure 1.3,
for the approach area of the Port of Rotterdam, one of the busiest ports in the
world. This port is visited by ships with draughts of over 20 m.

The properties of tidal sand waves have been explained using idealized
process-based models. Hulscher [1996] showed that the formation of tidal sand
waves can be explained as an instability of a horizontal, sandy seabed subject to
tidal flow and a sediment transport mechanism. Such a linear stability analysis
typically leads to preferred values of the wavelength and the growth rate. Later
on, the physics of this model have been refined in various respects. For exam-
ple, sand wave migration can be explained quantitatively as resulting from the
specification of a residual current [Németh et al., 2002] or a higher harmonic to
the tidal forcing [Besio et al., 2004]. A recent extension of the above approach
leads to a nonlinear model capable of describing tidal sand waves in an equi-
librium state [Sterlini et al., 2009]. Besio et al. [2008] provide an overview of
process-based sand wave models.

1.5 The uncertainty of depth measurements

For the analysis of any set of measured data, it is essential to realize that each
measurement is subject to a measurement error. The resulting uncertainty
of the measurement is usually given at a specified confidence level, based on
a statistical variance. The maximum acceptable uncertainties due to depth
measurement errors have been specified by the IHO S44 standards [International
Hydrographic Organization, 2008a]. This maximum uncertainty is usually depth
dependent, see Wells and Monahan [2002] for an overview of these and other
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Figure 1.3: The region West of the Port of Rotterdam, which is intensively used by
ships with a limited under keel clearance. The sandy shallow sea floor shows a variety
of rhythmic patterns. The shaded areas, bounded by the 20 m depth contour, clearly
show tidal sand waves, in Southeast/Northwest direction.

standards. The S44 standards apply to cleaned data, i.e. data from which the
gross errors have been removed, and the systematic errors have been corrected
for. The maximum uncertainty therefore applies to random errors, and the
residual effects of the systematic errors.

To formulate a variance, two approaches are possible. The a priori approach
uses the uncertainties of all sensors to calculate a Total Propagated Uncertainty
(TPU). These uncertainties are commonly known from sensor specifications of
the manufacturer. The a posteriori approach assumes that nearby measure-
ments should have a constant value, and therefore uses the differences to cal-
culate a variance. A disadvantage of the a priori variance is that it relies on
specifications, instead of the true performance of a sensor. A disadvantage of
the a posteriori variance is that residual systematic effects are not found. Ap-
proval of a bathymetric survey should therefore both include consideration of a
priori and a posteriori variances.

Over the past decade, the inclusion of variances in the storage of survey
results has become common practice. This was driven by two developments.
First, it has become common to outsource bathymetric survey work, which has
resulted in wide use of the IHO S44 standard in survey specifications. Second,
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the worldwide introduction of multi-beam echo sounders (MBES), which pro-
duce very large data sets, has required automated methods for data processing.
Therefore, algorithmic methods have been introduced that require data quality
as part of their input. Examples are the navigation surface [Smith, 2003; Smith
et al., 2002] and the Combined Uncertainty and Bathymetry Estimator (CUBE)
[Calder, 2003].

1.6 Problem formulation

To produce reliable nautical charts (Section 1.1), the RNLN needs up-to-date
bathymetric surveys. Sea floor dynamics in the Southern North Sea needs to
be quantified in order to optimize the resurvey policy (Section 1.2). Resurvey
planning is best served by applying a method that can distinguish between dif-
ferent types of dynamics in an area. One may e.g. wish to differentiate between
trends in large-scale⋆ sea floor depth, intermediate-scale trends in crest height of
a sand wave pattern, and small-scale changes at a specific location. It is thereby
necessary to separate true sea floor deformation from measurement inaccuracies,
or to establish whether a new survey confirms previous surveys. This requires
a method that has an adaptable number of spatial dimensions, that considers
trends, that is able to analyse sand wave behavior, and that treats its input
and output as stochastic estimates. None of the existing methods has these
properties (Section 1.3).

Nowadays, the physical processes of morphodynamics are better understood
(Section 1.4), the specification of the uncertainty of bathymetric data is com-
mon practice (Section 1.5), and information technology enables the storage and
efficient analysis of large data sets. These developments make the use of a sta-
tistical method which estimates a limited set of sea floor parameters and their
uncertainties desirable and feasible. This situation creates opportunities for the
development of a new, statistical method.

A technique which may satisfy the RNLN requirements is Deformation anal-

ysis [Chrzanowski, 2006; Koch, 1999; De Heus et al., 1994]. This statistical
method is well-known and has been widely applied for the analysis of a time
series of land surveys. To make this method applicable to the analysis of a time
series of bathymetric surveys, the technique has to be redesigned. This makes it
possible to apply deformation analysis on a series of depth values on a regular
grid, potentially showing a complicated rhythmic pattern. Deformation analysis
is able to estimate trends with a specified confidence interval. Important char-
acteristics include its flexibility in the number of dimensions, and in the number
of available surveys. Moreover, it has the ability to distinguish between a static
situation, trends in sea floor behaviour, and single surveys that show differing
properties, known as outliers. Such a distinction is made for both large-scale
depth variation and for tidal sand wave behavior.

⋆ Large-scale and small-scale are used throughout this study in its general definition,
meaning ‘wide ranging’ and ‘limited ranging’ respectively. In its cartographic definition, these
meanings are reversed.
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The problem that the RNLN faces is twofold. In the first place, a deformation
analysis procedure for bathymetric use should be designed, implemented and
tested. The procedure should satisfy the RNLN requirements. In the second
place, it is necessary to develop a procedure that includes the results of the
deformation analysis procedure in the resurvey policy for the Southern North
sea, taking into account the specific statistical properties of these results.

1.7 Research question and subquestions

To solve the formulated problem, the research question this project aims to
answer is:

How can deformation analysis use a time series of bathymetric surveys to

estimate sea floor dynamics that may include a migrating tidal sand wave

pattern in a satisfactory way, and how can these results be applied to improve

a resurvey policy?

In this project, an estimation is said to be satisfactory if it satisfies the follow-
ing three requirements. (1) The method should detect all significant sea floor
dynamics, potentially a combination of various types. (2) The dynamics are
estimated using as few parameters as possible to provide for a clear description
of the dynamics. (3) The uncertainties associated with the dynamics are as
small as possible.

If the resurvey policy satisfies the following four requirements, it is said to be
improved. (1) All detected sea floor dynamics have the potential to influence the
policy. (2) The risk of missed sea floor dynamics is accounted for. (3) Sea floor
dynamics that have a smaller uncertainty have a larger influence. (4) Sea floor
dynamics that pose a more severe threat to navigation have a larger influence.

The research question is answered by considering the following set of sub-
questions.

Q1: How can we express a bathymetric survey as a grid of depth values and

their uncertainties, to be used as input for deformation analysis?

Q2: How can deformation analysis estimate sea floor dynamics, using the ap-

propriate sea floor parameters, based on a time series of bathymetric sur-

veys expressed as grids of depth values and their uncertainties?

Q3: How do estimates of parameters for sand wave pattern dynamics, obtained

by the application of deformation analysis, vary on the scale of such a

pattern for a specific sand wave area in the Southern North Sea?

Q4: How do estimates of parameters for the sea floor and its changes, obtained

by the application of deformation analysis, vary over several areas in the

Southern North Sea?

Q5: How can the results of the application of deformation analysis be used to

improve the resurvey policy of the Netherlands Hydrographic Service?
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1.8 Research strategy and outline

The first two questions are methodical. The correct expression of bathymetric
survey data (Q1) is necessary as preparatory work for the estimation of sea floor
change (Q2): survey data needs to be given at an appropriate resolution and
with associated uncertainties. To this end, we base our design for a preparatory
procedure on a literature study, in Chapter 2. With a suitable expression of
the survey data, an estimation procedure is designed to estimate parameters for
sea floor dynamics in a satisfactory way, as specified above, using deformation
analysis, as given in Chapter 3.

Chapter 2 presents geostatistical theory in a way that emphasizes its con-
nections with statistical adjustment and testing theory, used in the deforma-
tion analysis procedure in Chapter 3. The chosen notations could make under-
standing more difficult for the reader that already has some familiarity with
geostatistics or testing theory, but it helps to connect the two methods. The
mathematical details of the designed procedure are placed in appendices to
Chapter 3, which makes this chapter better readable to readers that do not
seek a full understanding of adjustment and testing theory, while all details are
available. We provide additional support in the understanding of the used con-
ventions by providing a comprehensive overview of used notations at the end of
the dissertation.

The questions Q3 and Q4 require application of the designed method. We
apply this method to several regions of the BNLCS, and study the resulting
parameter values and their uncertainties. We focus on the relation of dynamics
with morphology first (Q3), and on the geographical distribution of the param-
eter estimates over the BNLCS thereafter (Q4). This happens in Chapters 4
and 5, respectively. Chapter 4 presents the results of one area in full detail. The
results of areas in four other regions of the Belgian and Netherlands Continental
Shelf follow in Chapter 5 in a more concise way, which allows for a discussion
on the variation of sea floor dynamics over the Southern North Sea.

Morphological change parameters by themselves are not yet useful to im-
prove a resurvey policy. Instead, the parameters need to lead to a small set
of indicators that allows to prioritize the analyzed areas with respect to each
other (Q5). Therefore, Chapter 6 presents a second procedure, which interprets
the parameters and their uncertainties. Chapter 6 has both a methodical part
and a results part. The design of a method to order the analyzed regions with
respect to the size of the estimated morphodynamics and the size of potentially
missed morphodynamics depends on the specific properties of the estimates. At
the end of this chapter, the recommended priorities are presented in a way that
allows for direct application to the resurvey policy of the Royal Netherlands
Navy.

The final Chapter 7 summarizes the answers to the five subquestions, for-
mulates an answer to the research question, and thereby concludes the current
research project. Recommendations are made for further scientific research and
further implementation at the RNLN, based on these answers.
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Chapter 2

Bathymetric applications of

Geostatistics

Abstract
A statistical way to describe a surface in space is by specifying the expected value and

variance at each point, and their mutual covariances. The surface is assumed to consist

of a trend function and a residual function. The covariances between those points are

expressed in a covariance function, based on the residual function. An application of

the covariance function is Kriging, an interpolation procedure that propagates the vari-

ances and covariances of the data points to variances of the interpolated values. This

approach is used widely for spatial analyses, like the interpolation of a bathymetric

data set.

2.1 Introduction

The application of deformation analysis to a series of bathymetric surveys re-
quires depth values and their associated uncertainties at constant positions,
preferably on a regular grid. However, bathymetric surveys provide for depth
values at positions that change with every survey and that are subject to posi-
tioning inaccuracies. Converting bathymetric survey positions to a regular grid
is commonly done using geostatistics. Geostatistics enables the interpolation of
the data to continuous depth and uncertainty surfaces. The uncertainty surface
includes the inaccuracy of the interpolation. In this chapter, a geostatistical
procedure is designed that works on surveys of a sea floor with potentially a
slope and a sand wave pattern, and that includes the vertical and horizontal
measurement uncertainties. The existence and values of the additional interpo-
lation variances and covariances of this procedure are studied, to incorporate
the interpolation errors into the error budget of deformation analysis.

The central idea of geostatistics is that a depth surface can be assumed as a
superposition of a deterministic trend⋆, and the remaining residuals, as shown
in Section 2.2. The residuals are described by the covariance function, in
Section 2.3. The covariance function is used to define the Kriging equations,
in Section 2.4. In Section 2.5, we draw some conclusions. This chapter gives a

⋆ In this chapter, the word ‘trend’ is used as is common in geostatistics, meaning the
general spatial tendency. In the following chapters, it is used as is common in deformation
analysis, meaning the general temporal tendency.
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background for the following chapters. The theory presented is based on Davis
[2002], Chilès and Delfiner [1999], Isaaks and Srivastava [1989], and Chatfield
[1989].

2.2 Depth as a trend and its residuals

The trend is described by a series of basis functions, see Subsection 2.2.1, and the
residuals by a covariance function, see Subsection 2.2.2. Such a description using
a covariance function assumes stationarity, which is treated in Subsection 2.2.3.

2.2.1 The trend described by basis functions

Consider a two-dimensional horizontal coordinate system in which the position
of a point is defined by its coordinates xp = (xp, yp), and two positions differ
by hpq = (∆xpq ,∆ypq) = (xq − xp, yq − yp). Their distance is hpq = ‖hpq‖. We
represent the depth of the sea floor d(x) by a superposition of a spatial trend

function m(x) and a function describing the remaining residuals r(m)(x):

d(x) = m(x) + r(m)(x). (2.1)

Figure 2.1 shows this situation. The trend function m(x) is deterministic, i.e.
it does not include random processes. We will also call this the morphological

characterization. It is expressed as a linear combination of basis functions ak(x),
using coefficients uk:

m(x) =
K−1
∑

k=0

ukak(x). (2.2)

The first function is commonly a0(x) = 1, to account for the depth at the
origin x = (0, 0). In case of an approximately linearly sloping sea floor, the
basis function for k = 1 and k = 2 are a1(x) = x and a2(x) = y. The basis
functions are chosen such that its expected value E{d(x)} equals m(x), and
E{r(m)(x)} = 0. In this chapter we limit the number of basis functions to
K = 3.

2.2.2 The residuals described by covariances

A posteriori approach

The residual function r(m)(x) describes the morphological dispersion, i.e. sea
floor structure. This is considered to be a random function with an expected
value of zero. A random function is a function describing a random process. It
is used to define the covariance between points xp and xq as

c(m)(xp,xq) = E{r(m)(xp)r
(m)(xq)}. (2.3)

The covariance between two values of the same function is also called autoco-

variance. The autocovariance at distance h = 0 equals the variance c(m)(xp,xp),
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Figure 2.1: Sketch of depth d(x) (solid line) under sea level (dotted line), morpho-
logical characterization m(x) (dashed line), and their difference: the morphological
residual r(m)(x) (gray line).

or σ(m)2(xp). It is often useful to collect all variances and covariances in a co-

variance matrix C
(m)
pq , that has the variances on its main diagonal, while the off-

diagonal elements give the covariance. Because c(m)(xp,xq) equals c(m)(xq ,xp),
this matrix is symmetric with respect to the main diagonal.

Using equation (2.3), we cannot calculate the covariance matrix before the
residual function r(x) is available. Such an approach is called a posteriori,
because the calculation of the covariance is done after the calculation of the
residuals.

A priori approach

If we have prior statistical knowledge about the structure of the residual func-
tion r(x), an a priori approach is also possible. If r(x) consists of I uncorrelated
components ri(x) with known covariance functions ci(xp,xq), the application
of equation (2.3) is not necessary. The advantage of this is that it is not nec-
essary to know r(x) before calculating c(xp,xq). The relation of the covariance
functions is called the propagation of variances, and is given by e.g. Koch [1999]
and Teunissen [2000].
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Let us assume the uncorrelated components ri(x) have a linear relation to
r(x) via the coefficients ai:

r(x) =

I
∑

i=1

airi(x). (2.4)

The matrix Ci,pq contains the autocovariances ci(xp,xq). The covariances are
propagated as:

Cpq =

I
∑

i=1

a2
i Ci,pq, (2.5)

or, equivalently:

c(xp,xq) =
I

∑

i=1

a2
i ci(xp,xq). (2.6)

2.2.3 Stationarity

A function f(x) is first order stationary, if its expected value E{f(x)} is in-
dependent of the location x. It is second order stationary, if it is first order
stationary and the covariance c between two positions only depends on position
difference h, and not on position itself. This means c = c(h), for all h including
the variance c(0). The residual function r(x) of such a covariance function c(h)
is said to describe uniform morphology.

2.3 Covariance functions

The residual function r(x), introduced in Section 2.2, is random, and therefore
cannot be described by a combination of deterministic functions. However, there
is another way to describe it statistically: by its covariance function. First, we
introduce the covariance function in general, and study its properties, in Subsec-
tion 2.3.1. Then, we study the effects of measurement errors in Subsection 2.3.2,
and the benefits of the assumption that the covariance is independent of direc-
tion, known as isotropy, in Subsection 2.3.3. We continue in subsection 2.3.4
with the application of the theory to a discrete set of depth values, which we
apply to bathymetry in Subsection 2.3.5.

2.3.1 Definition and properties of covariance functions

The covariance function c(h) of the second order stationary random function of
residuals r(x) is defined as

c(h) = E{r(x)r(x + h)}. (2.7)

Covariance functions are positive definite [Chilès and Delfiner, 1999], meaning
that all variance calculations lead to nonnegative results. The covariance func-
tion is also symmetric: c(h) = c(−h). Normalization of autocovariance results
in autocorrelation c(h)/c(0).
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Figure 2.2: Sketches of Gaussian covariance functions. Solid line: a one-dimensional
covariance function; dashed line: the corresponding variogram. Visible are the sill
(down-pointing triangle, and asymptotic value of the variogram), the nugget (difference
between down-pointing triangle and right-pointing triangle, and value of the variogram
at zero distance) and the inflection point (up-pointing triangle). For the Gaussian
function, the range is about twice the inflection point.

An alternative way of expressing the similarity between two points at dis-
tance h is the variogram γ(h) [Chilès and Delfiner, 1999],

γ(h) = c(0) − c(h) (if h > 0). (2.8)

The value γ(0) is called the nugget, which accounts for spatially uncorrelated
variations. The covariance function c(h) has a discontinuity at h = 0 of the size
of the nugget. This discontinuity is known as the nugget effect. Its value c(0)
is the sill. The correlated part c(0) − γ(0) is denoted c0.

The covariance function approximates zero for large distances. The distance
beyond which no covariance is assumed to exist is the range hmax: c(h > hmax) =
0. An example of a one-dimensional covariance function and the corresponding
variogram are shown in Figure 2.2.

2.3.2 Influences of measurement errors on the covariance function

Measured depth values

If depth d(x) is measured, the morphological residuals r(m)(x) are subject to
the stochastic influence e(v) that is associated with each measurement. Their
combined random function is denoted r(mv)(x):

r(mv)(x) = r(m)(x) + e(v)(x). (2.9)

To indicate stochastic parameters, we underline them. Superscript m indicates
the influence of morphological variation, and superscript v the influence of depth
measurement. Figure 2.3 shows this situation. It is assumed that these depth
measurement errors e(v) have a normal distribution N (0, σ(v)2), with their own
covariance function c(v)(h). The uncorrelated part of σ(v)2 forms the nugget
effect γ(v)(0).
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Figure 2.3: Sketch of residual r(mv)(x) (thin line) and residual r(m)(x) (thick line).

The covariance function of the morphological residuals r(x) is denoted c(m)(x).
We assume that the measurement process is independent from the morphology,
and we can therefore propagate the covariances according to equation (2.6):

c(mv)(h) = c(m)(h) + c(v)(h). (2.10)

Measured positions

If positions xp are measured as well, we must account for the contribution of
positioning errors e(l) to the depth error, as the depth values are not located
correctly. Measured positions

x(l)
p = xp + e(l)

p (2.11)

are available, instead of the true positions xp. This also affects the morphological
residuals r(mv)(x). We denote the combined effect of the horizontal and vertical
error as e(hv)(x). This combined error changes the residual function to

r(hmv)(x) = r(m)(x) + e(hv)(x), (2.12)

see also Figure 2.4. Therefore, the covariance function changes as well:

c(hmv)(h) = c(m)(h) + c(hv)(h). (2.13)

We derive the covariances c(hmv)(h) from the measured differences hpq between
positions xp and xq:

h(l)
pq = h + e(l)

p − e(l)
q . (2.14)

This situation has been described by Chilès [1976], Gabrosek and Cressie [2002],
and Cressie and Kornak [2003]. The probability density function p(e(l)) for the
error in position measurement is defined in the two-dimensional field of real
numbers R

2. Usually, it is assumed to follow an unbiased Gaussian function
N (0, σ(l)2). First, we make the assumption that position measurements are un-
correlated. The relation between the covariance functions c(mv)(h) and c(hmv)(h)
is in that case [Chilès, 1976]:

c(hmv)(h) =

∫∫

R2

∫∫

R2

c(mv)(h)p(e(l)
p )p(e(l)

q )de(l)
q de(l)

p . (2.15)
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Figure 2.4: Sketch of residual r(hmv)(x) (thin line), residual r(mv)(x) (medium line),
and residual r(m)(x) (thick line).
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Figure 2.5: Sketch of the effect of position errors on the covariance function, after
Chilès [1976]. A one-dimensional covariance function c(mv)(h) without the influence of
position measurement (solid line) and the corresponding covariance function c(hmv)(h)
with the influence of position measurement (dashed line), in this case Gaussian func-
tions.

As illustrated in Figures 2.4 and 2.5, the introduction of positioning inaccuracies
decreases the correlation at small distances h → 0, and thus results in a larger

nugget effect. Equation (2.14) shows that e
(l)
p − e

(l)
q will, on average, increase

the distance h(l)
pq = ‖h(l)

pq‖ for these distances:

lim
hpq→0

E{h(l)
pq} = E{‖e(l)

p − e(l)
q ‖} > 0. (2.16)

At larger distances, E{h(l)
pq} approximates E{hpq}, because here E{‖e(l)

p −e
(l)
q ‖}

will approximate zero, and the difference between the two covariance functions
disappears.

Usually, measured positions are positively correlated at small time differ-
ences, which correspond to small position differences in track direction. See
e.g. Amiri-Simkooei and Tiberius [2006] for correlation of satellite navigation
system positions in time. Compared to the uncorrelated situation, the expected
positioning error for small distances decreases, and as a consequence the differ-
ence between E{hpq} and E{h(l)

pq} decreases too. Therefore, c(hmv)(h) becomes

more similar to c(mv)(h).
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Binned positions

The original data might be binned, which means a single value is assumed to
represent the value everywhere in a rectangular bin, or grid cell, of a certain
size. The value, measured somewhere in the bin, is thereby shifted to its cen-
ter. Cressie and Kornak [2003] and Gabrosek and Cressie [2002] show that the
effect of binning on the variogram is similar to that of horizontal positioning
inaccuracies, as given by equation (2.15).

2.3.3 The effect of isotropy on the covariance function

Instead of the Cartesian coordinate differences (∆x,∆y), we could also use
polar coordinates (h, θ) to express the vector of position differences h. Azimuth
θ is East of North, θ = tan(∆x/∆y), and (∆x,∆y) = (h sin θ, h cos θ). If a
covariance function c(h) depends on the azimuth θ, it is called anisotropic.
Two special situations are specified for two-dimensional covariance functions:

1. anisotropy in scale: the covariance is expressed as

c(h) = c(h, θ(x), s), (2.17)

in which s is a horizontal scale factor, s > 1, relating the direction of
highest variability θ(x) to the perpendicular direction of lowest variability
θ(y);

2. isotropy: the covariance is direction-independent, s = 1, and thus de-
scribed by

c(h) = c(h). (2.18)

Examples are given in Figure 2.6. If the anisotropy is not an anisotropy in scale,
the covariance function might not be positive-definite anymore, and should be
approximated by such a scale anisotropy, see also Christakos [1984].

To describe scale anisotropy, we consider a second two-dimensional coordi-

nate system in which a position is defined by its coordinates x
(ps)
p = (x

(ps)
p , y

(ps)
p ),

and two positions differ by h
(ps)
pq = (∆x

(ps)
pq ,∆y

(ps)
pq ). The x(ps)-axis of the new

system coincides with the direction θ(x), and the y(ps)-axis coincides with a
direction 90o counter-clockwise. Those two axes coincide with the principal di-

rections of the covariance and are scaled with factor s. The relation between a
position in the original system x(o) and the same position in the scaled system
x(ps) is

[

x(ps)

y(ps)

]

=

[

cos θ(x) − sin θ(x)

s sin θ(x) s cos θ(x)

] [

x(o)

y(o)

]

. (2.19)

Consecutively, we define the scaled distance as:

h(ps) =
√

∆x(ps)2 + ∆y(ps)2, (2.20)

enabling us to express the covariance function as:

c(h) = c(h(ps)). (2.21)
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Figure 2.6: Sketches of Gaussian covariance functions in two dimensions. The sill
is visible as a down-pointing triangle. The figures at the left are isotropic, and the
figures at the bottom row contain a hole effect, due to some rhythmic pattern. The
anisotropy of graphs (b) and (d) is anisotropy in scale.

In this new system, the covariance function with scale-anisotropy is isotropic.
The covariance function is described in the original system by the sill c(0), the
correlated variance c0, the direction θ(x), and the two ranges ∆ymax and ∆xmax.
The scale factor s is derived from these ranges as ∆ymax/∆xmax. An example
is given in Figure 2.7.

2.3.4 The empirical covariance function

In practice, we work with data sets of the sea floor, the consequences of which
are discussed in this section. To guarantee second order stationarity, uniform
morphology d(x) per data set is necessary. Segmentation of the sea floor into
areas that are a morphological unit is e.g. done by Pluymaekers [2007] and
Pluymaekers et al. [2007]. We take a pragmatic approach here, and create area
boundaries based on prior knowledge of the sea floor, as e.g. available in nautical
charts.
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Figure 2.7: Sketches of Gaussian covariance functions, that define a two-dimension
covariance function with anisotropy in scale. Solid line: direction θ(x); dashed line:
direction θ(y).
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Figure 2.8: Sketch of the residual r(hmv)(x) (solid line), and its discrete realization
r(hmrv)[xp] (black dots and dashed line).

Only a discrete realization r(hmrv)[xp] of the residual function r(hmv)(x) is
available, at the P available data points xp. See Figure 2.8 for an example. The
relation between the two residual functions is:

r(hmrv)(x) = r(hmv)(x) + e(r)(x). (2.22)

For the discrete set of data positions xp, the realization error e(r)[xp] equals zero,
and thus the two residual functions are equal there. Although the covariance
function c(hmrv)(x) will be based on the discrete residual function r(hmrv)[xp], it
actually describes a continuous function r(hmrv)(x). The continuous covariance
function is only useful if the resolution of data points xp is high enough to
guarantee that c(hmrv)(x) approximates their true covariance function c(hmv)(x).
This is a necessary condition to ensure that a continuous function r(hmrv)(x)
is close to the real function of residuals r(hmv)(x). (In the remainder of this
section, the superscripted indices of the covariance and residual functions are
dropped for brevity.)

Firstly, the discrete covariance function c[h] is calculated by considering a
number of intervals (i, j), where i is the index to the distance interval, and j to
the azimuth interval. In case of scale anisotropy, θj is one of two perpendicular
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Figure 2.9: Sketches of azimuth intervals [θj−∆θ, θj+∆θ] (left) and distance intervals
[hi − ∆h, hi + ∆h] (right) for the calculation of covariances cj [hi]. The axes of the
rotated coordinate system are indicated by x(p) and y(p).

directions θ(x) and θ(y) between 0◦ and 180◦. In that case, we define an interval
as [hi − ∆h, hi + ∆h] and [θj − ∆θ, θj + ∆θ], with ∆h half the interval size
for distance, and ∆θ half the interval size for azimuth. The azimuth interval
includes its opposing interval [180◦+θj −∆θ, 180◦+θj +∆θ]. This is illustrated
in Figure 2.9.

Using these intervals, equation (2.7) is reformulated as [Chatfield, 1989]:

cj [hi] =
P∗

∑

p=1

r[xp]r[xp + h∗
i ]/P

∗, (2.23)

where P ∗ is the number of values of r at position differences h∗
i , at distances h∗i

between hi−∆h and hi+∆h. Further, those position differences have directions
θ∗i between θj −∆θ and θj +∆θ, and hi is the average distance between all pairs
in the interval. Equation (2.23) can also be derived via least-squares variance
component estimation, as shown by Teunissen and Amiri-Simkooei [2008].

The coordinate transformation of equation (2.19) is performed in two steps.

First, we find the principal direction θ(x). The rotated coordinate system of
which the directions of the axes coincide with the principal directions is denoted
(x(p), y(p)). It is defined as

[

x(p)

y(p)

]

=

[

cos θ(x) − sin θ(x)

sin θ(x) cos θ(x)

]

[

x(o)

y(o)

]

(2.24)

After that, we use this system to calculate the scale parameter s via the fit of
two covariance functions in the two principal directions. We are then able to
work in the scaled coordinate system (x(ps), y(ps)):

[

x(ps)

y(ps)

]

=

[

x(p)

sy(p)

]

. (2.25)
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Direction of highest variability

First, the azimuth of highest variability θ(x) needs to be found. It is the direction
of the average gradient of the data. In case a rhythmic pattern is present, the
direction of the survey tracks has often been chosen accordingly. In such a
case, the survey direction is close to θ(x). Alternatively, the direction of highest
variability could be estimated, e.g. by the DIGIPOL algorithm [Van Munster
et al., 1995; RIKZ, 1997; De Koning, 2007]. We propose a simplified version of
this algorithm [Dorst, 2004], consisting of the following four steps.

1. Grid r[xp] to a dense grid in coordinate system x(o), and do not mind
about empty nodes. This results in r[x(l,m)] in the grid of size L×M ;

2. Calculate the local gradient ∇r[x(l,m)] by the differences around each grid
node (l,m) in both the directions x and y:

∇r[x(l,m)] =





r[x(l+1,m)]−r[x(l−1,m)]

x(l+1,m)−x(l−1,m)

r[x(l,m+1)]−r[x(l,m−1)]

y(l,m+1)−y(l,m−1)



 . (2.26)

The gradient has magnitude ‖∇r[x(l,m)]‖, and azimuth θ(g)[x(l,m)]. Do
this at those points where the neighbouring nodes are not empty;

3. Project all local gradients into the direction θ, for θ in [ϑ, 180o], and change
this direction with increments ϑ of for instance a degree. The variability
v[θ] is:

v[θ] =
L

∑

l=1

M
∑

m=1

‖∇r[x(l,m)]‖abs(cos(θ − θ(g)[x(l,m)]))/(LM). (2.27)

The absolute value is denoted abs() here.

4. Assign the direction perpendicular to the direction that gives the smallest
sum of projected gradients v[θ] to azimuth θ(x). If v[θ] is independent
of θ, r[xp] is isotropic. If the anisotropic minimum and maximum are
not approximately 90o apart, the anisotropy is not an anisotropy in scale
between two perpendicular axes.

Examples of v[θ], based on Figure 2.10, are given in Figure 2.11.
A higher or lower data density in the track direction results in biased vari-

ability towards or away from the track direction. This happens for instance
with single-beam data. It is clear from Figure 2.11 that the direction of lowest
variability is more pronounced than the direction of highest variability. This
is our reason to estimate this direction from the variability function, instead of
estimating the direction of highest variability directly.

The study of the fourth surface of Figure 2.10 explains this effect. In case
of a sand wave with constant crest height, the azimuths of the gradients are
constant at θ(g), provided the grid nodes do not coincide with the peaks or
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Figure 2.10: Four simulated surfaces, for which their variability v as a function of
azimuth θ is shown in Figure 2.11.

troughs. In that case, equation (2.26) simplifies to express variability as the
absolute of a cosine function, which makes a sharp change in slope at its zero
minimum.

We define the azimuth interval of equation (2.23) as follows: ∆θ = 22.5o.
Because θ is defined between zero and 180o, both the intervals create two areas,
centered around θj and θj + 180o. In other words, the intervals are centered
around the principal directions, and together they cover half the area, see also
Figure 2.9.

The value of ∆θ should on one hand not be too small, to provide sufficient
data pairs at distances between h−∆h and h+∆h, and on the other hand not be
too wide, thereby biasing the covariance estimation for direction θj too much. In
case of single-beam surveys, the resolution in the across-track direction is very
low with respect to the along-track direction. Therefore the azimuth interval
cannot be very small, and ∆θ = 22.5o gives good results.

The number of intervals for h depends on the size of the area: at distances
larger than half the length of its smallest cross-section, the number of pairs starts
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Figure 2.11: Variability v as a function of azimuth θ, for the four simulated surfaces of
Figure 2.10. Note that the maximum and the minimum of the function are 90o apart,
as long as the scales in both the directions are clearly different, and that the direction
of lowest variability is more pronounced than the direction of highest variability.

to decrease, and therefore the autocovariance values become less accurate. The
number of intervals is a trade-off between the number of required autocovariance
values, and their accuracy. Larger intervals mean higher numbers of point pairs,
and therefore a higher accuracy. However, larger intervals also mean a worse
resolution of cj [h].

Several other procedures exist. Instead of subtracting neighbouring nodes,
the procedure could also use a block technique in several specified directions, like
demonstrated by Lindenbergh [2004]. Both Pluymaekers et al. [2007] and Calder
[2006] suggest a method that uses covariance functions in various directions.
Pluymaekers et al. [2007] also suggest a method per grid node, drawing profiles
in various directions, and counting the number of extreme values. The wide
usage and straightforward approach make the DIGIPOL algorithm the most
attractive, though.
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The fit of a function

To create a continuous function, a positive definite function c(h) is fit through
the calculated covariances cj [h]. The function c(h) is the empirical covariance
function. Christakos [1984] places restrictions on the function that could be fit.
A covariance function needs to be permissible, to guarantee that this function
is positive definite.

The Gaussian function is a attractive choice, because it approximates the
behaviour of the covariances at small distances well, where a good fit is most
important. As seen in Section 2.3.2, the effect of horizontal position uncertainty
is especially prominent at small distances, resulting in a smooth behaviour at
those distances, just like a Gaussian function.

The discontinuity c(0) has to be excluded from the fit. The Gaussian covari-
ance function is

c(h) = c0 exp (−(h/h(i))2), (2.28)

with the inflection point at h(i). In case of a rhythmic pattern, the covariance
function behaves like the product of the Gaussian function and a cosine function:

c(h) = c0 exp (−(h/h(i))2) cos(κh). (2.29)

Here, κ is the wave number, and ℓ = 2π/κ is the wavelength of the rhythmic
pattern. Such a function is also called a hole effect function [Pyrcz and Deutsch,
2003]. For distances h that are small with respect to ℓ, equation (2.29) approx-
imates equation (2.28), see Figure 2.12. This implies that the autocovariance
of a sea floor showing a 1D rhythmic pattern can be safely approximated by
scalar anisotropy, for small h. As Figure 2.12 shows, the approximation of func-
tion (2.29) by (2.28) is valid up to the inflection point of the Gaussian function.
Therefore, the covariance function for scale anisotropy should not be used at
distances larger than the inflection points.

As a two-dimensional covariance function that includes a rhythmic pattern
in only one dimension is not permissible, it needs to be approximated by a
function that does not contain this pattern. In contrast to function (2.29),
function (2.28) is always permissible, independent of the number of dimensions
or the combination of the parameters of the function [Christakos, 1984]. How-
ever, Wackernagel [2003] warns against it, as the infinite differentiability at the
origin may give unrealistic Kriging results.

To describe the discontinuity at h = 0, a nugget function is necessary, which
is a permissible function as well. Such a function consists of a single value to ac-
count for the nugget at h = 0, and equals zero elsewhere. The sum of the nugget
and the Gaussian function is our final covariance function, which is permissi-
ble because it is the sum of two permissible functions. The smooth Gaussian
function with the addition of a nugget effect is recommended by Herzfeld [1989]
for bathymetry, as the sea floor generally has a smooth nature. Wackernagel
[2003] notes that the addition of a nugget effect solves the undesirable infinite
differentiability of the Gaussian function.
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Figure 2.12: Sketch of a Gaussian covariance function with hole effect (dotted line),
and its approximation by a Gaussian covariance function without hole effect (solid
line). Visible are the inflection points h(i) (up-pointing triangles, open for the hole
effect function, closed for the no-cosine function), and the wavelength ℓ of the cosine
effect function (left-pointing triangle). The approximation of the hole effect function
by the Gaussian function is valid at distances smaller than the inflection point of the
latter.

Equation (2.23) gives us the variance c[0] as:

c[0] =

P
∑

p=1

r[xp]
2/P. (2.30)

The parameters c0 and h(i) are estimated by a fit of function (2.28) on cj [h].

The best fit at small distances is obtained if the covariance values of cj [h]

are weighted by P ∗2/h, so that the fit is good for small distances and reli-
able covariance values. If there is scale anisotropy, we estimate two inflection

points h
(i)
j , and one correlation variance parameter c0. The nugget γ(0) follows

from equation (2.8). The anisotropy factor s is calculated as s = h(ix)/h(iy),
using the inflection points in the directions of highest and lowest variability.
Another indicator of the strength of the anisotropy is the variability quotient
max(v[θ])/min(v[θ]).

An example of the fit of the two covariance functions in equation (2.28)
and (2.29) is shown in Figures 2.13 and 2.14. From those figures, several ob-

servations can be made. The covariance values in direction θ(y) are much more
spurious than those in direction θ(x), because of the difference in sampling den-
sity: the survey lines run approximately in the direction θ(x). The covariance
function in direction θ(x) decreases faster than the one in direction θ(y), because
the variability is higher in the direction θ(x). At distances larger than the inflec-
tion points, the fit gets worse, because of the limited similarity of the empirical
covariance values with a Gaussian function. This is acceptable, as we will only
use the covariance functions up to the inflection points.
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Figure 2.13: Results for the covariance function of the May 2000 survey of critical
area G: variability v as a function of azimuth θ. The directions θ(x) and θ(y) are 37o

and 127o respectively, and the variability quotient is 2.8.

2.3.5 Usage in hydrography

The covariance function (or the variogram) is used to describe the morphological
variations of the sea floor r(x), like the wavelength of sand waves [Robert, 1988;
Robert and Richards, 1988]. In case of such rhythmic features in one dimension,
it is shown above that the anisotropy can be approximated by scale anisotropy
in two perpendicular principal directions.

The covariance function is also useful to express the influence of the mea-
surement errors on the depth values. As described above, a single covariance
function is able to include all correlated and uncorrelated errors, in both the
horizontal and vertical directions. Autocovariance is often the highest in the
direction of the ship track, and the lowest in the perpendicular direction. If
the ship tracks are in the direction of highest sea floor variability, as is good
practice, there are still only two principal directions in the combined covariance
function, which is estimated from depth data using the above procedure. A
sketch of both the covariance functions, for sea floor variation and measurement
errors, and their combined total covariance function, is shown in Figure 2.15.
According to the propagation law of variances, see Section 2.2.2, the combined
covariance function is simply the sum of the two covariance functions. Although
not strictly Gaussian, the result is still approximated by one Gaussian function
in each principal direction.

The main application of the variogram and covariance function in hydrog-
raphy is to estimate weights for the interpolation of depth values. Such an
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Figure 2.14: Results for the covariance function of the May 2000 survey of critical
area G: the two estimated Gaussian covariance functions for the principal directions,
their parameters, and the covariance values on which they are based (right). Direction
θ(x): solid line, closed symbols; direction θ(y): dotted line, open symbols. The inflection
points h(i) (up-pointing triangles) are at 77 m and 136 m, so the anisotropy factor s
is 1.8. The correlated variance parameter c0 = 5.83 m2 is the right pointing triangle,
the sill c(0) = 6.29 m2 is the down-pointing triangle, and the nugget effect γ(0) = 0.47

m2 their difference. The 95-th percentile of the residuals is 1.96
√

c(0) = 4.92 m. The
correlated part of this is 1.96

√
c0 = 4.73 m at 95%, and the uncorrelated part is the

nugget effect, that has the value 1.96
√

γ(0) = 1.34 m at 95%.
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Figure 2.15: Covariance functions for the morphological variation (solid line), the
measurement errors (dashed line), and their combined effect (dotted line). Visible are
the inflection points h(i) (up-pointing triangles, closed for the morphological covariance
and open for the error covariance). The combined function is approximately Gaussian.
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estimation of the interpolation weights is called Kriging, which is the subject of
the next section.

2.4 Kriging

The two-dimensional depth function d(x) of the sea floor is only known by
its measured values d[x], collected in a data set. The geostatistical method
of Kriging is available to estimate a surface d(x), based on a description of
the depth function as the sum of a trend function and a residual function, see
Section 2.2. The residual function is described by the covariance function, as
calculated in Section 2.3.

The current section describes how Kriging calculates a grid of interpolated
depth values d[x] and their variances σ2[x], and it also shows that the inter-
polated depth values are correlated in the same way as the measured depth
values. First, we introduce Kriging in general, and study its properties, in Sub-
section 2.4.1. Then, we look at the procedure to calculate interpolation weights,
in Subsection 2.4.2. Next, we look at its interpolation equations, with special
emphasis on the Kriging variance, in Subsection 2.4.3. Finally, we discuss some
practical implications in Subsection 2.4.4.

2.4.1 Kriging interpolation and properties

Interpolation methods generally calculate a value at a position xn as a weighted
average of Pn surrounding data points xp. Let Pn × 1 vector w contain the
weights wp, and Pn×1 vector dp the depth values d[xp]. Further, let the matrix

Cn describe their variances σ2(xp) according to c(hmrv)(0) on its main diagonal,
and covariances c(xp,xq) according to c(hmrv)(h) as its other elements. The
interpolated depth dn = d[xn] and its propagated variance σ2

n are

dn = wTdp, σ2
n = wTCw. (2.31)

If interpolation is applied to the Pn×1 vector rp of residuals r(hmrv)[xp] instead,
we have:

dn = mn + wTrp, σ2
n = wTCw. (2.32)

In this equation, mn is the value of trend m(x) at xn, and the product wTrp is

denoted r(n)[xn].
Assuming second order stationarity, Kriging derives its weights from the spa-

tial covariance function, to calculate values and their variances at grid points.
The covariance function is stochastic, because it is derived from stochastic co-
variance values, that are in turn based on the stochastic residuals.

Kriging is a Best Linear Unbiased Estimation (BLUE) technique, meaning
that the estimates have minimal variance, depend linearly on the data, and that
the expected value of the estimates equals the mean. All linear interpolation
methods can propagate the variances and covariances of the data to the inter-
polated value, but Kriging also uses the variances and covariances to estimate
the weights, thereby ensuring all BLUE criteria are met.
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The covariance c(xp,xq) is denoted cpq from here on, and the corresponding

notation of the variance σ2
p is cpp. If a grid is used for the interpolation, the

grid points are called nodes. Kriging relates the covariance cpn between a node
at xn and an available data point at xp to the covariances cpq between the data
points at xp and xq.

The positions of the nodes are not stochastic, but Kriging assumes that the
covariance function between two measured positions c(hmrv)(h) is equal to the
covariance function between a measured position and a node, or the covariance
function between two nodes, except for the variances:

cpq(h) = cpn(h) = cmn(h), ∀h > 0. (2.33)

This is a consequence of the second-order stationarity assumption of Kriging.

Types of Kriging

There are three main types of Kriging, based on the number of basis functions
K of equation (equl):

1. simple Kriging, if the trend function is zero: K = 0;

2. ordinary Kriging, if the trend function, denoted m(c)(x), is constant:
K = 1;

3. universal Kriging, if the trend function, denoted m(u)(x), is variable:
K > 1.

Simple Kriging estimates the interpolation weights only, from a set of covari-
ances. Ordinary Kriging requires the introduction of a single Lagrange param-

eter u
(c)
0 to solve for the unknown mean, while universal Kriging uses several

Lagrange parameters u
(u)
k to describe the unknown trend.

We further distinguish between point Kriging and block Kriging. Block Krig-
ing is used if the node is a representation of the surrounding area, which is called
the support of the node. If the node is not assumed to represent a surrounding
block, point Kriging is used. In our procedure, we use point Kriging, as the
support of the data points, formed by the bins, was already taken into account
as a source of horizontal error when the covariance function was estimated.

Therefore, we apply universal point Kriging to the residuals of the depth
function d[x]. We do not use block Kriging, because we assume the interpolated
values are only valid at the node xn where they are calculated. We use Universal
Kriging, because the residuals possibly still contain a smaller-scale spatial trend,
namely a sand wave pattern.

As Armstrong [1984] points out, a difficulty of universal Kriging is the neces-
sity to subtract the trend function from the measured surface to obtain the resid-
uals, from which the covariance function is calculated. However, this trend func-
tion is not calculated until the universal Kriging equations are solved. Herzfeld
[1989] deals with this problem for bathymetric data. We take another approach,
as we limit the geographic extent of the data points used for the interpolation
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Figure 2.16: Sketch of residual function r(hmrv)(x) (grey line), and a local trend
functionm(u)(x) used for Universal Kriging (black line), in case of a sand wave pattern.

of a node, see below. In case of a sand wave pattern, the anisotropy in the
covariance function allows for a smaller geographic extent in the pattern direc-
tion θ(x) than in the crest direction θ(y). Therefore, we locally approximate the
sand wave by a sloping plane, which corresponds again to the choice of K = 3,
as in Section 2.2. To distinguish this Universal Kriging trend in the residuals
from the overall trend m(x) in the depth data, we denote the trend of Universal
Kriging as m(u)(x). The situation is shown in Figure 2.16.

2.4.2 The calculation of weights

As concluded in Section 2.3.4, covariances between a data point at xp and a
node at xn are assumed zero outside a circle with radius h(i), or, in case of scale
anisotropy, outside an ellipse with semi-major axis h(iy) and semi-minor axis
h(ix). Because we set covariances cpn for larger distances to zero, the number
of points involved is reduced from P to Pn. This reduction speeds up the
calculation of the weights considerably.

For each point xn, a set of equations is formulated, describing its covariance
with each data point. The Kriging weights are calculated from this set of equa-
tions. These equations follow from the minimum variance constraint. To ensure
unbiasedness, an additional equation for each basis function ak(x) is added to
this set of equations. The basis functions have been defined by equation (2.2).
A formal derivation of the universal Kriging equations can be found in Chilès
and Delfiner [1999].

The local trend m
(u)
n (x) through the Pn data points around xn will be intro-

duced in the Kriging equations, to ensure unbiasedness. The additional term is
called the Lagrange term:

m(u)
n (x) =

2
∑

k=0

u
(u)
k,nak(x). (2.34)

These Lagrange parameters u
(u)
k,n also make the number of equations equal to

the number of parameters, thereby enforcing a unique solution of the set of
equations. (The values of the basis functions ak(x) at xp are denoted ak,p.)
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For Pn data points and K = 3 basis functions, this leads to the following set
of Pn +K equations at xn:

cpn =

Pn
∑

q=1

wnqcpq +

2
∑

k=0

u
(u)
k,nak,p, ∀ p = 1, · · · , Pn;

ak,n =

Pn
∑

p=1

wnpak,p, ∀ k = 0, · · · ,K − 1. (2.35)

The equation for k = 0 implies that the Kriging weights add up to one, because
a0 = 1, independent of the positions xp. This does not exclude negative weights.

To describe equations (2.35) in vector notation, we introduce the Pn × Pn

symmetrical covariance matrix C, containing the covariances cpq for all p and
q, and variances c(0) on its main diagonal. To guarantee that this covariance
matrix is positive definite, we cannot use zeros here for covariances between xp

and xq at larger distances than h(i), but we use the values of the covariance
function. Row p and column q of C are denoted cT

p and cq. The Pn × 1 vector

wn stores weights wpn. Also, we use the notation ap and u
(u)
n for the K × 1

vectors of basis function coefficients and Lagrange parameters at node xn, and
ak for the Pn × 1 vector of coefficients of the basis function k at positions xp.
In vector notation, equation (2.35) becomes:

cpn =
[

cT
p aT

p

]

[

wn

u
(u)
n

]

, ∀ p = 1, · · · , Pn;

ak,n = aT
k wn, ∀ k = 0, · · · ,K − 1. (2.36)

Let Pn ×K matrix A contain the vectors aT
k in its rows and ap in its columns,

and let the K×K matrix O contain only zeros. The Pn×1 covariance vector cn

stores the covariances cpn. We reformulate the linear system of equations (2.36)
as

[

cn

an

]

=

[

C A
AT O

] [

wn

u
(u)
n

]

. (2.37)

We use a positive definite covariance function for C, see Subsection 2.3.1, which
guarantees that this submatrix is positive definite. However, there is no guaran-
tee that the total matrix in equation (2.37) is positive definite. In the exceptional
case that it is not, Chilès and Delfiner [1999] propose a solution based on two
subsystems of positive definite matrices, which will not be discussed here. If it
is positive definite, the Kriging weights and Lagrange parameters follow from

[

wn

u
(u)
n

]

=

[

C A
AT O

]−1 [

cn

an

]

. (2.38)

These weights are used in equation (2.32) to calculate depth values. Their
uncertainties are given in the next section.
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Figure 2.17: Sketch of the residual r(hmv)(x) (solid line), its discrete realization
r(hmrv)[xp] (black dots and dashed line), and its interpolated realization r(n)[xn] (white
circles and dotted line).

2.4.3 Kriging uncertainty

The Kriging error

The residuals r(m)(x) are not known at any position, however their approxi-
mated values r(hmrv) are, at the positions xp. Interpolation regards these values
r(hmrv)[xp] as samples from the surface r(hmrv)(x), as in figure 2.8. Thereby, it
introduces a new error, the Kriging error e(k), at the interpolation position xn,
see Figure 2.17.

The resulting value at the grid node is r(n):

r(n)[xn] = r(hmrv)[xn] − e(k). (2.39)

The sign of e(k) is chosen negatively, because interpolation is a smoothing pro-
cess, thereby reducing the size of the residual r(hmrv). This means for instance
that there will exist higher peaks and lower troughs than predicted by an inter-
polation procedure.

The interpolation error e(k) will be quantified by the Kriging variance c(k)(0),
to be derived below. The variances and covariances of the measurements at xp

propagate into the variance and covariances of the grid nodes at xn. We call
this the propagated nodal covariance function c(n)(h). Both contribute to the
total covariance function at the nodes, which is still the stationary c(hmrv)(h):

c(hmrv)(h) = c(n)(h) + c(k)(h). (2.40)

This situation is sketched in Figure 2.18. Note that the decreasing magnitude
of the residuals of an interpolation process is visible here as a reduction of the
variance σ(hmv)2.

Kriging onto a grid

The calculation of a grid of N interpolated depth values will not only enable
the calculation of their propagated variances, see equation (2.32), but also their
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Figure 2.18: Covariance function for the combined residuals (dotted line), which
equals the bottom graph in Figure 2.15. As this function is stationary, it is also valid
for the propagated covariance between two nodes at xm and xn. The propagated
variance, the Kriging variance, and their combined variance are also shown.

mutual covariances. To calculate these propagated covariances of the grid, we
first need to formulate how the depth values at the data points propagate into
the depth values at the grid nodes, via the interpolation procedure. The values
r(hmrv)[xp] of all P data points are collected into a P × 1 vector rp. The weight

vectors wT
n are the rows of N × P weight matrix W, after the insertion of zero

weights for the data points further away than h(i). The N ×K Lagrange matrix

U(u) contains the Lagrange vectors u
(u)T
n . The K × 1 vector o contains zeros

only. The matrix C now has a size P ×P . The N ×1 vector r
(n)
n of interpolated

residuals r(n)[xn] and their matrix C(n) of propagated covariances are:

r(n)
n =

[

W U(u)
]

[

rp

o

]

,

C(n) =
[

W U(u)
]

[

C A
AT O

] [

WT

U(u)T

]

. (2.41)

The interpolated residuals r(n)[xn] and their variances σ
(n)
n , on the main diagonal

of C(n), were originally introduced in equation (2.32).

We use C(n) to calculate the Kriging variances. This approach is also taken
by Davis [2002]. The Kriging variance also follows from the minimum variance
property, that is used by Chilès and Delfiner [1999] to derive the universal
Kriging equations.

The matrix of covariances and base functions in equation (2.41) has already
been used for the calculation of the weights, in equation (2.38). The covariance

between nodes xm and xn is an element of covariance matrix C(n). Such an
element is calculated as:

c(n)
mn =

[

wT
m u

(u)
m

]

[

C A
AT O

] [

wn

u
(u)
n

]

. (2.42)
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Using equation (2.38), this equation becomes

c(n)
mn =

[

wT
m u

(u)T
m

]

[

cn

an

]

. (2.43)

A propagated variance element σ
(n)2
n is calculated correspondingly.

Using equation (2.40), the covariance function for the Kriging uncertainties
is:

c(k)(h) = c(hmrv)(h) − c(n)(h). (2.44)

Covariances c(n)(h) are calculated from equation (2.43). Because all covariances
for h > 0 are defined stationary, as assumed in equation (2.33), the outcome
of equation (2.43) equals c(hmrv)(h), and therefore all Kriging covariances are
zero, for m 6= n:

c(k)(h) = 0, h > 0. (2.45)

However, if m = n, we do not assume the propagated variance of a grid node
c(n)(0) to equal the variance of the residuals σ(hmrv)2. The differences are the
Kriging variances, which are, using equation (2.43):

σ(k)2
n = σ(hmrv)2 − wT

ncn − u(u)T
n an. (2.46)

Clearly, the Kriging variance has to be interpreted as a nugget function:

c(k)(h) > 0, h = 0. (2.47)

If the interpolation is accurate (σ(k)2 is small), a large part of the stationary
variance σ(hmrv)2 at xn is due to the propagated variance σ(n)2. It is caused
by the morphological deviations from the trend, as well as the horizontal and
vertical errors of the surrounding data points that propagate into the variance
at xn due to their correlations. However, if the interpolation is inaccurate, there
is not much correlation with the data points, which means that the propagated
influence of the morphology and the errors cannot be large. Instead, the Krig-
ing error is large, to account for the stationary variance σ(hmrv)2 at xn. The
situation is visualized in Figure 2.18. See Section 2.4.4 for an example of the
propagated and the Kriging variances.

The minimum and maximum Kriging variance

To get insight in the values that we can expect for the Kriging variance, we
discuss the two extreme situations of full covariance and no covariance between
points. We denote the Kriging variances of the two cases as σ

(k)2
min and σ

(k)2
max

respectively. Thereby, we use the equations that we just derived here above.

In case all covariances approximate their maximum c
(hmrv)
0 , the vector prod-

uct wT
ncn also approximates c

(hmrv)
0 . Therefore, equation (2.46) gives:

σ
(k)2
min = σ(hmrv)2 − c

(hmrv)
0 − u(u)T

n an

= γ(hmrv)(0) − u(u)T
n an. (2.48)



52 Chapter 2. Bathymetric applications of Geostatistics

Provided that the Lagrange term is negligible, we conclude that the mini-
mum Kriging variance equals the nugget of the covariance function: σ(k)2 ≈
γ(hmrv)(0).

In case all covariances approximate zero, the vector product wT
ncn also ap-

proximates zero. It follows from equation (2.46) that

σ(k)2
max = σ(hmrv)2 − u(u)T

n an. (2.49)

Provided that the Lagrange term is negligible, we conclude that the maximum
Kriging variance equals the variance: σ(k)2 ≈ σ(hmrv)2.

The above leaves the question if the Lagrange term m
(u)
n (xn) = u

(u)T
n an

really is negligible. The three Lagrange parameters u
(u)
n , calculated via equa-

tion (2.38), represent a mean residual, and the two slopes of the tangential plane.
The closer the residuals around xn are to zero, and the less they change, the
smaller the Lagrange term is. In practice, the Lagrange parameters are so small

that the product u
(u)T
n an does not play a significant role. See Section 2.4.4 for

an example of the Lagrange terms.

2.4.4 Kriging of a bathymetric survey

As an example, Figures 2.19 to 2.23 show the results of the geostatistical inter-
polation of a critical area of the Selected Track. From these figures, it becomes
clear that the biggest source of interpolation uncertainty is an uneven distribu-
tion of data points around a node, as happens at the boundary of the area. The
Kriging variances all exceed the nugget effect γ(0) of the covariance function,
and they are all smaller than the total variance c(0). Both are visible in Fig-
ure 2.14. A comparison of Figure 2.14 with Figure 2.20 shows that all nodes
have been interpolated relatively accurately.

The application of geostatistics to hydrography is common. Most usage
assumes the sea floor does not have a trend, and therefore apply ordinary Krig-
ing. Herzfeld [1989] applies universal Kriging, because she cannot make this
assumption. Some apply geostatistics to formulate how accurately the sea floor
is known between the sounding lines of single-beam surveys [Calder, 2006; Kiel-
land and Tubman, 1994; Velberg, 1993; Kielland et al., 1992]. Subsequently,
it is possible to formulate recommendations on line spacing [Bouwmeester and
Heemink, 1993; Kielland and Dagbert, 1992]. Others use geostatistics to calcu-
late a continuous model of the sea floor from point data for mapping [Chilès,
1976; Chilès and Chauvet, 1975], even in case of strong anisotropies [Te Stroet
and Snepvangers, 2005]. Such a continuous model could also be used for vol-
ume calculations [Slobbe, 2005]. Bottelier et al. [2005] use Kriging for outlier
detection in multi-beam data sets, and Van Dijk et al. [2008], Lindenbergh et al.
[2006] and Laban [2005] apply it in a sand wave area, to filter rhythmic features
at certain scales from multi-beam data. The use of geostatistics in hydrography
is approved by the IHO, as a bathymetric model [International Hydrographic
Organization, 2008a].

Using geostatistics, we could calculate the nodes as densely as we like. A
higher density of known points means a better knowledge of the discrete func-
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Figure 2.19: Results of the Kriging process for the May 2000 survey of critical area G:
kriged depth values dn. The x-axis coincides with the direction of highest variability
θ(x), which equals the direction of the sand wave pattern, and the y-axis with the
direction of lowest variability θ(y), which equals the direction of the sand wave crests.
These directions are the directions determined in Figure 2.13.

tion. To prevent the incorrect conclusion of very good knowledge of this func-
tion, based on a few data points, it is not advisable to sample at a higher density
than the original data. This problem is discussed for hydrography by Slobbe
[2005].

As discussed in Section 2.3.1, the maximum relevant distance of a data
point is called the range. By setting the range equal to the inflection point
of the Gaussian covariance function, we make a rather rigorous choice. This
reduces the number of data points, while still a good nodal accuracy is obtained.
Limiting the Kriging range has two advantages. The first advantage is that it
speeds up the interpolation process. The second advantage is that isotropy can
be assumed on small distances. However, for a good fit of c(h), it is necessary
to calculate c[h] up to a large distance. A large maximum point distance means
smooth interpolated values, so the preservation of details might be another
reason to limit the Kriging distance.

In hydrography, the sea floor is often represented using 5 × 5 meter bins.
The sea floor is assumed horizontal within such a bin. This assumption allows
us not to interpolate, if a data point is available at a shorter distance than 5m
from the node. Instead, we assign the value of the closest data point and its
measurement uncertainty. We only take this approach if a value is available for
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Figure 2.20: Results of the Kriging process for the May 2000 survey of critical area
G: Kriging uncertainties for the 95% confidence limit 1.96σ(k)

n . Also, the original data
points and the boundaries of the area are shown. The Kriging variances are all larger
than the nugget effect γ(0) of the covariance function, and all smaller than the total
variance c(0). These values are given in Figure 2.14. The sum of the two uncertainties
σ(k)2

n and σ(n)2
n is c(0).

Figure 2.21: Results of the Kriging process for the May 2000 survey of critical area G:
the propagated uncertainties for the 95% confidence limit 1.96σ(n)

n . Also, the original
data points and the boundaries of the area are shown. The sum of the two uncertainties
σ(k)2

n and σ(n)2
n is c(0).
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Figure 2.22: Results of the Kriging process for the May 2000 survey of critical area
G: the number of used depth measurements Pn. Also, the original data points and the
boundaries of the area are shown.

Figure 2.23: Results of the Kriging process for the May 2000 survey of critical area
G: the Lagrange terms m

(u)
n (xn). Also, the original data points and the boundaries of

the area are shown.
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each bin. In case of such a survey with full coverage of the sea floor, Kriging is
not necessary at all.

2.5 Conclusion

If bathymetry is represented by a continuous surface, interpolation of the depth
measurements is necessary to calculate depth values anywhere on this surface,
like a regular grid. However, interpolation of bathymetric data, already affected
by horizontal and vertical measurement errors, results in an additional inter-
polation error. The application of Universal Kriging calculates a variance for
this interpolation error, and is suitable for areas with a slope and a sand wave
pattern. Universal Kriging does not introduce additional covariances between
the depth values at the interpolated positions. The assumption of second order
stationarity plays a central role, limiting the size of the area to be interpolated.



Chapter 3

The estimation of sea floor dynamics

from bathymetric surveys of a sand

wave area⋆

Abstract

The analysis of series of offshore bathymetric surveys provides insight into the mor-

phodynamics of the sea floor. This knowledge helps to improve resurvey policies for

the maintenance of port approaches and nautical charting, and to validate morphody-

namic models. We propose a method for such an analysis that is based on statistical

testing theory, particularly aimed at the detection of dynamics in areas with tidal

sand waves. The method explicitly considers the uncertainty of every measured depth

value, resulting in parameter estimates for the sea floor dynamics, and their uncer-

tainty. We apply the method to sea floor representations both with and without a

sand wave pattern. A test scenario is set up, consisting of a survey of an existing

area in the Southern North Sea, for which dynamics are simulated. The results show

that the proposed method detects different types of sea floor dynamics well, leading

to satisfactory estimates of the corresponding parameters.

3.1 Introduction

The sea floor of shallow seas is dynamic. For example, rhythmic morphological
patterns on sandy beds can change in height and migrate [e.g. Wright, 1992;
Terwindt, 1971], thereby possibly endangering navigation through busy ship-
ping lanes. Such patterns exist on many scales [Knaapen et al., 2001]. In this
paper we consider tidal sand waves which are characterized by a wavelength of
hundreds of meters, a height of several meters, and a migration rate of up to
twenty meters per year [Van Dijk et al., 2008; Van Dijk and Kleinhans, 2005;
Knaapen et al., 2001].

The evolution of the sea floor can be interpreted from a series of echo sounder
surveys, as has been attempted for the Netherlands Continental Shelf by many
authors [recently e.g. Van Dijk et al., 2008; Buijsman, 2007; Knaapen, 2005].
The stochastic character of surveyed depth values of the sea floor complicates

⋆ This chapter was published as L. L. Dorst, P. C. Roos, S. J. M. H. Hulscher, and R. C.
Lindenbergh [2009]. The Estimation of Sea Floor Dynamics from Bathymetric Surveys of a
Sand Wave Area, J. of Applied Geodesy, 3(3), 97-120.
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the analysis of its evolution: even modern survey techniques reveal depth values
with an uncertainty of a few decimeters at best [Wells and Monahan, 2002], due
to random and systematic errors in the measurement processes.

Frequent bathymetric surveys of shallow seas are necessary to support the
maintenance of port approaches, to produce reliable nautical charts, and to
support coastal management decisions. The analysis of past surveys aids the
planning of resurvey frequencies. Examples of survey plans are available on the
internet [NOAA Office of Coast Survey, 2008] and in the literature [De Oliveira
et al., 2007; Dehling, 2006; Whatrup et al., 2005]. In our opinion, resurvey plan-
ning is best served by applying a method that can distinguish between different
types of dynamics in an area. One may e.g. wish to differentiate between trends
in large-scale sea floor depth and trends in crest height of a sand wave pattern.
It is thereby necessary to separate true sea floor deformation from measurement
inaccuracies, or to establish whether a new survey confirms previous surveys.

The quantification of the uncertainty of surveyed depth values is a subject of
growing interest in the hydrographic community [e.g. Calder, 2006; Dorst, 2004;
Hare, 1995], since dealing with uncertainties is crucial to control the quality of
the survey during the process and to interpret bathymetric data. Therefore,
the method should recognize the stochastic character of surveys. Other require-
ments are that such a method detects the type of dynamics in an area, estimates
the sizes of the detected dynamics well, and provides the uncertainty associated
with those estimates.

There are a few authors that have taken measurement uncertainty into ac-
count. Wüst [2004] presents a method that is able to estimate local linear
trends in depth, using uncertainties. Knaapen et al. [2005] and Lindenbergh
et al. [2007] developed his method further. The genetic method of Knaapen
and Hulscher [2002] is capable of estimating trends in amplitude. Several au-
thors have attempted to remove horizontal inaccuracies in sand wave migration
studies, using markers [recently e.g. Knaapen, 2005].

In this paper, we propose deformation analysis as a method to analyze a
series of surveys of the sea floor, particularly in the presence of a sand wave.
e.g. Lindenbergh et al. [2007] and Dorst [2004] described this application before
in less detail. The application of this method at the Netherlands Hydrographic
Service was discussed before at a conceptual level [Dorst, 2005]. The novelties
presented here are that this application of deformation analysis is described in
combination with variance component estimation, and in combination with the
estimation of wavelength. A third novelty is that the specific application to
one-dimensional cross-sections of an area is studied.

An overview of literature on deformation analysis is given by Chrzanowski
[2006]. This type of analysis applies statistical adjustment theory and testing
theory to a series of surveys of deformable objects. Adjustment theory involves
parameter estimation, and testing theory involves hypothesis testing. These
statistical concepts are applied to the processing of surveys by e.g. Teunissen
[2000, 2001] or Koch [1999].

The proposed method is described in Section 3.2. A test scenario that is
described in Section 3.3 illustrates the validity of this approach. The results of
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Figure 3.1: Overview of the procedure to analyze a series of surveys. This paper
focuses on the shaded steps.

the analysis of this scenario are discussed in Section 3.4. Sections 3.5 and 3.6
contain the discussion and conclusions, respectively.

3.2 The method for the estimation of sea floor dynamics

3.2.1 Introduction

The method consists of several steps (Figure 3.1): the preparation of a series
of bathymetric surveys (step 0), see Section 3.2.2; the actual analysis (steps 1
and 2); and the adaptation of the survey policy (step 3, beyond the scope of
this article). This adaptation influences the availability of future surveys, and
thereby the moment a new analysis can be done.

The analysis results in a separation of the morphological characterization
from the residual variation, the concept of which is given in Section 3.2.3. Al-
ternative characterizations are specified in Section 3.2.4, and selected in Sec-
tion 3.2.5. The residuals are described in Section 3.2.6.

3.2.2 Input

Overview of the input

Our analysis method requires an input consisting of the following five quantities:

1. fixed positions xp = (xp, yp) at points p = 1, 2, · · · , P ;

2. times ts for the surveys s = 1, 2, · · · , S;

3. depth values dp,s for each point p and each survey s;

4. error variances σ
(e)2
p,s for each point p and each survey s;

5. covariances c
(e)
p,q,s between the errors at xp and xq during survey s.
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For the properties of the variance and covariances of error ep,s, see Appendix 3.A.
A logical choice for the set of points is a rectangular grid with axes in the

(x, y)-directions and a sufficiently high resolution to prevent aliasing effects of
possible sand wave patterns. Due to computational constraints, the grid can in
practice not be very dense, though. The grid axis x coincides with the direction
of the highest variability, which is determined using the DIGIPOL method [Van
Munster et al., 1995; RIKZ, 1997; De Koning, 2007]. This is done to ensure
that the direction of a sand wave pattern, if present, coincides with the x-
direction, and the grid axis y is thus parallel to the direction of the crests. The
spatial extent of the area is restricted by the assumption that both the spatial
covariance relations and the morphodynamics are uniform within the area. The
spatial covariances are discussed in Appendix 3.A.

Each node must be assigned a depth value and a variance for each survey.
Such an assignment procedure is evident for surveys that fully cover the sea
floor, but requires interpolation in other cases. Kriging is a commonly accepted
method for bathymetric interpolation (Chapter 2). A recently proposed alterna-
tive is the use of Combined Uncertainty and Bathymetry Estimation (CUBE)
[Calder, 2003]. The interpolation procedure allows us to combine surveys of
single-beam echo sounders and surveys of multi-beam echo sounders. The input
requirements are further discussed in Section 3.5.1.

Vectorization of the input

We use a column vector d for all depth values dp,s at all p and all s, in which
the order is not relevant. (Vectors are printed in bold lower case letters.) We

do the same for the error ep,s in e and the residual r
(em)
p,s in r. All these vectors

have size M × 1, where M = PS is the total number of depth measurements.
We also introduce the S×1 column vector t of survey times relative to reference
time tref : t = [t1 − tref , t2 − tref , · · · , tS − tref ]

T. (A transpose is denoted by a
superscripted T.)

Finally, we define the covariance matrix of the measured depth values as
Cd, with the variances on its main diagonal, and covariances on its symmetric
off-diagonal elements. (Matrices are printed in bold upper case letters.) In

case of variances and covariances for the measurement errors ep,s, matrix C
(e)
d

contains the variances σ
(e)2
p,s and the auto-covariances c

(e)
p,s1,q,s2 between the depth

values at position (xp, yp) during the survey at ts1 , and position (xq , yq) during
the survey at ts2 . The measurement processes cause no correlation between
surveys, so cp,s1,q,s2 = 0 if s1 6= s2. If s1 = s2 = s, cp,q,s is calculated from
function cs(h), where covariance cs depends on position difference h between
xp and xq.

3.2.3 Sea floor characterization and its residuals

Consider a three-dimensional Cartesian coordinate system with horizontal axes
x and y, and an upward z axis. The sea floor at time t is given by the surface
z = −d(x, y, t). The measurement and interpolation of the depth values d(x, y, t)
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introduce an error e(x, y, t):

d(x, y, t) = d(x, y, t) + e(x, y, t). (3.1)

(We underline all realizations of parameters influenced by stochastic measure-
ment and interpolation inaccuracies.) The actual error e(x, y, t) associated with
d(x, y, t) is unknown, but its variance σ(e)2(x, y, t) is often quantified using a sta-
tistical procedure, see e.g. Calder [2006]; Hare [1995] for measured depth values,
and e.g. Calder [2006]; Velberg [1993] for interpolated depth values. Usually, it
is assumed that the errors have a Gaussian distribution, with an expected value
of zero, and a variance expressed by the 95% probability value 1.96σ(e)(x, y, t).

Each point on the measured depth surface d(x, y, t) can be considered a
superposition of a morphological characterization m(x, y, t) that we consider
to be a deterministic trend function, and the remaining morphological resid-

ual r(m)(x, y, t) that we consider to be a random function. The total residual
r(em)(x, y, t) is the sum of the morphological residual and the error. This enables
us to express equation (3.1) as:

d(x, y, t) = m(x, y, t) + r(em)(x, y, t). (3.2)

Just like the depth function d(x, y, t) is only known through its realization

dp,s, we will also work with discrete sets mp,s, r
(em)
p,s and ep,s for m(x, y, t),

r(em)(x, y, t) and e(x, y, t) respectively.
The expected value of r(em)(x, y, t) is zero, and a measure of its variability,

or dispersion, is the variance σ2
r(x, y, t):

E{r(em)(x, y, t)} = 0; D{r(em)(x, y, t)} = σ2
r (x, y, t). (3.3)

The mathematical operator for the expected value is denoted by E{}, and for
dispersion by D{}, defined as

D{r(em)(x, y, t)} = E{(r(em)(x, y, t) − E{r(em)(x, y, t)})2}. (3.4)

The characterization is assumed deterministic, which means that it has no dis-
persion, σ2

m = 0, and therefore the dispersion of depth equals the dispersion of
the residuals, σ2

d = σ2
r . Depth is then represented using the trend function and

the variance function of the residuals:

E{d(x, y, t)} = m(x, y, t); D{d(x, y, t)} = σ2
r (x, y, t). (3.5)

We call this combination of a characterization and its dispersion a representation

R.

3.2.4 Morphological characterization

Characterization in space

In this section, we characterize the sea floor by a one-dimensional approach in x-
direction, i.e. considering grid lines of constant y. Therefore, depth is expressed
as d = d(x, t), with a positive sign in negative z-direction.
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We introduce several alternative representations R to characterize the com-
plexity of the morphology ms(x) of the sea floor during survey s. There are
four levels of complexity for the representation R: R(0), R(1), R(2), and R(1+2),
see Figure 3.2. We assume that all surveys have the same level of complexity,
and that the wavelength in R(2) and R(1+2) is constant.

The simplest characterization of the sea floor is a horizontal surface, the

zero-level representation R(0) : d
(b)
s is constant. The only parameter involved is

the bed level d(b):
R(0) : ms(x) = d(b)

s . (3.6)

The three alternatives R(a) assume that depth varies with position, with a ∈
{1, 2, 1 + 2}. An addition to a characterization to create a more complex one is
called an extension. In the representation R(1), we extend R(0) using the slope
parameter ψ = −∆z/∆x to model a linearly sloping characterization:

R(1) : ms(x) = d(b)
s + ψsx. (3.7)

We call both the representations of equations (3.6) and (3.7) planar, although
in the absence of a second dimension y they represent straight lines. This is
done for similarity with the two-dimensional approach.

As an alternative for R(1), we represent a rhythmic pattern using a cosine
function with parameters amplitude A and crest position ξ. The pattern has a
constant wavelength L, which is determined during the testing procedure:

ms(x) = d(b)
s − As cos(2π(x − ξs)/L). (3.8)

In this equation, the relation between the morphological characterization ms(x)
and crest position ξs is nonlinear. A minus sign is introduced because the crest
is defined by the minimum depth. To obtain a linear expression, we replace the
original sand wave parameters As and ξs by the linear provisional sand wave

parameters A
(c)
s and A

(s)
s . They are related as:

A(c)
s = As cosκξs, A

(s)
s = As sinκξs, (3.9)

with wave number κ = 2π/L, see also Appendix 3.B. The second-level charac-
terization of representation R(2) thus becomes:

R(2) : ms(x) = d(b)
s −A(c)

s cosκx−A(s)
s sinκx. (3.10)

Also, we allow a combination of R(1) and R(2), denoted R(1+2):

R(1+2) : ms(x) = d(b)
s + ψsx−A(c)

s cosκx−A(s)
s sinκx. (3.11)

Because the pattern on the sea floor seldom takes the shape of a sine function,
the amplitude A and the crest position ξ of R(2) are hard to interpret. Instead,
we use the parameters amplitude factor A′ = A/Aref and migration ξ′ = ξ− ξref
with respect to the estimated amplitude and crest position of a reference survey,
e.g. for survey s = 1, see also Appendix 3.B. We call those parameters the final
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Figure 3.2: Definition sketch of the sea floor characterizations, showing some of the
parameters that are used in the testing procedure.

sand wave parameters, they have a physical meaning for any pattern that is
present in a series of surveys.

A general linear expression for the characterization ms(x) is by the inner
product of a parameter vector u and a coefficient vector a:

ms(x) = aTus. (3.12)

A characterization of survey s in step 1 is written as in equation (3.12), using
us for a parameter d(b), ψ, A(c) or A(s), and using a for the coefficients. Each
coefficient a equals the value of a basis function a(x) at x: 1, x, cosκx or sinκx,
respectively. Both us and a are U × 1 column vectors, with U the number of
parameters.

Because all surveys use the same U parameters, all vectors a are the same for
every survey s. All parameter vectors us are different, as there are always some
differences between the surveyed depth values, resulting in US parameters to
describe the sea floor during S surveys. In step 1, it is not yet clear if parameter
u is static or dynamic. In step 2, we will detect if dynamics are present for each
parameter u, and if so, what the structure of the dynamics is.

Characterization in time

The spatial representation introduced above describes the sea floor during a sin-
gle survey s. To find significant dynamics, we formulate a static representation
as R0 : E{d} = m(x) (Figure 3.3a). Also, we formulate alternative representa-
tions as Ra : E{d} = m(x, t), which extend the static characterization to allow
for specific changes of a sea floor parameters u in time. All characterizations
remain linear, as in equation (3.12).
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Figure 3.3: Alternative temporal sea floor characterizations.

For each parameter u, we consider the following extensions in time with
respect to uref at time tref (Figure 3.3b and 3.3c) :

1. outlying parameter ∆us for survey s:

Rs : u(t) =

{

uref (if t 6= ts)
uref + ∆us (if t = ts)

; (3.13)

2. a linear trend u̇ of the parameter in time:

Rtr : u(t) = uref + u̇(ts − tref). (3.14)

A parameter is said to be outlying for a specific survey if it significantly differs
from its values for the other surveys, either due to measurement artifacts or a
change in the sea floor. Also, combinations of equations (3.13) and (3.14) are
allowed (Figure 3.3d), to account for nonlinearities in the trend.

A characterization of step 2 is also written as in equation (3.12), where
u = u(t), a = a(x) for R0, and a = a(x, t) for Ra. Both u and a are N × 1
column vectors, with N the number of parameters. The value of N depends
on the representation, U ≤ N ≤ US. N is at its minimum for R0, and at its
maximum if all surveys behave as outliers.

For R(2) and R(1+2), we divide u(t) into a set of planar parameters in upl(t)
and a set of sand wave parameters in usw(t), which allows us to obtain different
types of dynamics for the planar parameters and the sand wave parameters. Like
upl(t) and usw(t), we divide a(x) into apl(x) and asw(x). For R(1) or R(1+2),
we do not separate the parameters in upl(t) further, as dynamics in slope imply
dynamics in depth at x = 0.



3.2. The method for the estimation of sea floor dynamics 65

As an example, we consider the extension of a trend in the sand wave pattern
for R(1+2). For this extension, the morphological characterization mp,s of depth
dp,s is expressed as:

mp,s = a
(1+2)T
ref u

(1+2)
ref + aT

tr,swutr,sw. (3.15)

In this equation, the reference vectors a
(1+2)T
ref and u

(1+2)T
ref are:

a
(1+2)T
ref = [1, x,− cosκx,− sinκx],

u
(1+2)T
ref = [d

(b)
ref , ψref , A

(c)
ref , A

(s)
ref ]. (3.16)

Further, the sand wave trend vectors atr,sw and utr,sw are:

aT
tr,sw = [−(ts − tref) cosκx,−(ts − tref) sinκx],

uT
tr,sw = [Ȧc, Ȧs]. (3.17)

Vectorization of the characterization

Let theM×1 morphology vector m contain the values ofmp,s, and let covariance
matrix Cd contain the dispersion, as in Section 3.2.2 for the measurement error.
The description of all depth measurements in any representation is then:

R : E{d} = m; D{d} = Cd. (3.18)

For vectors, the relation between the expected value and the dispersion is re-
formulated as D{d} = E{(d − E{d})(d − E{d})T}. The variances σ2

d of Sec-
tion 3.2.3 are the diagonal elements of matrix Cd. With the definition of m in
equation (3.12), we get:

m = Au, (3.19)

in which the M ×N matrix of coefficients A contains the vectors aT as its rows.

3.2.5 Morphological analysis

Overview of the analysis

A way to select the characterization for steps 1 and 2 is the application of
statistical estimation and testing theory. An overview is given here, details are
treated in Appendix 3.C.

Our approach is a variant of the one taken by De Heus et al. [1994]. This
approach is called the B-method of testing, developed by Baarda [1968]. We use
an adapted version of the B-method, illustrated in Figure 3.4. This diagram is
a more detailed view of the steps 1 and 2 of Figure 3.1.

The most likely characterization m is selected by statistical extension tests,
using test quotients q

a
for the alternative extensions. The extension that has

the largest test quotient is added to the characterization, after which new test
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Figure 3.4: Flow diagram of our approach, modeled after the B-method of testing.
This diagram is a followed in the steps 1 and 2.

quotients are calculated. This iterative procedure continues until all remaining
extensions have a test quotient smaller than one.

Hereafter, a representation is accepted if the overall test is accepted, which
means that the test quotient q(o) is smaller than one. If it is larger than one,
we cannot extend the characterization anymore, but relax the dispersion matrix
Cd instead, by increasing its variance and covariance values. Using both the
characterization and the dispersion in an estimation procedure, we obtain the
final vector of estimates û and their uncertainties Cu.

Selection of the characterization in step 1

In step 1, we select the N = US significant spatial parameters for the area of
the surveys, and estimate them, along with their uncertainty. All surveys must
have the same spatial representation, only the parameter estimates are allowed
to differ per survey.

We test the two extensions R(1) and R(2) for step 1 simultaneously, as shown
in Figure 3.5. We vary the wavelength L of R(2) over the interval 200 m < L <
1000 m, to find the dominant wavelength L(d), which we use for R(2). To this
end, we express the test quotient of R(2) as:

q(2) = q(2)(L), (3.20)

and optimize this function as:

q(2)
max

= max(q(2)(L)). (3.21)

The dominant wavelength L(d) is the wavelength used for q(2)
max

. The interval is
possibly further limited by the grid spacing and the length of the grid line. If
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Figure 3.5: Selection of the characterization of step 1. This diagram shows the
iterations in the top panel of Figure 3.4.

the maximum is found at a boundary of the interval, it is not assumed to be the
dominant wavelength, and consequently no sand wave extension is accepted.

Selection of the characterization in step 2

Next, step 2 detects the behaviour of the N ≤ US spatial parameters in time,
and gives estimates for this behaviour, including the uncertainty of the esti-
mates. Although the procedure is generally similar to the one for the spatial
analysis of step 1, there are several differences.

The first difference is that the initial covariance matrix C
(e)
d of step 1 only

contains the quantification of the errors e, modeled by the variances σ
(e)2
p,s and

the covariance function c
(e)
s (hx), with hx the distance in x-direction. The initial

covariance matrix C
(em)
d of step 2 also includes the quantification of the mor-

phological residuals r, as resulting from step 1, provided that the overall test of

step 1 was not accepted. The elements of the covariance matrix C
(em)
d of step 2

are defined by the variances σ
(em)2
p,s and the covariance function c

(em)
s (hx).

The second difference is the number of extensions. The spatial representation
has only two possible extensions (Figure 3.5). For the temporal representation,
S + 1 dynamic alternatives are formulated for R(0) and R(1): S for the out-
liers, and one for a trend. Likewise, R(1+2) and R(2) have 2(S + 1) formulated
alternatives: S + 1 for the planar parameter set, and S + 1 for the sand wave
parameter set.

The third difference is that both extensions of the spatial analysis can be
accepted. The temporal analysis stops if S − 1 extensions have been made (in
case of spatial representation R(0) or R(1)) or if S − 1 extensions have been
made per parameter set (in case of spatial representation R(2) or R(1+2)). This
is to guarantee that the columns of matrix A remain linearly independent: a
parameter without a trend can only have S − 1 outliers, and a parameter with
a trend only S − 2. This way, the matrix ATC−1

d A, necessary to calculate Cu

(Appendix 3.C.2), is invertible.

The fourth difference of step 2 is that we do not test all extensions simulta-
neously. We first test the two linear trend extensions. When no further trend
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Figure 3.6: Selection of the characterization of step 2. This diagram shows the
iterations in the top panel of Figure 3.4. (a) The trends are tested first, in this case

for R(1+2); (b) the outliers are tested thereafter, in this case for R
(1+2)
pl,sw .

extensions are accepted, we continue with the extensions for outliers. This shows
that we prefer to misinterpret a combination of outliers as a trend, over the op-
posite misinterpretation of a trend as a combination of outliers. The procedure
is shown in Figure 3.6.

3.2.6 Variance and covariance estimation

The covariance matrix after step 1

In step 1, the rejection of the representation by the overall test means that
the components of error ep,s, identified in Appendix 3.A, cannot explain the

residuals r
(em)
p,s . Instead, an extension has to be made, which decreases r

(em)
p,s , or

the current covariance matrix Cd needs to be relaxed. If no further extensions
can be made, the residuals are supposed to have an additional morphological
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component r
(m)
p,s , due to an incomplete characterization:

r(em)
p,s = ep,s + r(m)

p,s . (3.22)

The corresponding covariance function is:

c(em)(hx) = c(e)(hx) + c(m)(hx), (3.23)

with variance σ2 used for c(0). The covariance matrices are denoted accordingly

as C
(e)
d and C

(em)
d . An example is given in Figure 3.7. The variance σ

(e)2
s (x)

can explain the error es(x) in Figure 3.7a, but not the residual r
(em)
s (x) in Fig-

ure 3.7b. By increasing the variance to σ
(em)2
s (x), using Least Squares Variance

Component Estimation (LSVCE), the residual r
(em)
s (x) is again fully described

by its variance, see Figure 3.7c.
The elements of a covariance matrix are estimated using least squares vari-

ance component estimation (Appendix 3.D). The details for covariance matrix

C
(em)
d are given in Section 3.D.4. As we have a covariance function per survey

grid (Section 3.D.2), we cannot take an approach per grid line, but use cofac-
tor matrices per grid. This generalization will be corrected by the covariance
estimation per grid line of step 2.

The covariance matrix after step 2

After completing the extension process in step 2, we assume that the residuals

also have a temporal component r
(t)
p,s, that accounts for the additional residuals

with respect to the newly estimated characterization of step 2. We express this
as:

r(emt)
p,s = r(em)

p,s + r(t)p,s. (3.24)

Therefore, we change the covariance matrix C
(em)
d to a new matrix C

(emt)
d that

contains this temporal component, as explained in Section 3.D.5.
Subsequently, the final variances σ2

u are calculated using the new matrix

C
(emt)
d (Section 3.C.2). We choose the approach of a single covariance compo-

nent per grid line, just like the morphological characterization. This way, we
correct the generalization of the covariance estimation per survey grid of step 1.

3.3 Specification of a test scenario

3.3.1 Specification of depth values

The method is validated by a test scenario, based on an actual survey of an area
in the Southern North Sea in 2003, using the values of the Appendices 3.C.7 and
3.C.8 for the statistical parameters αa, γ, kα and λa. The approximate position
of the area is: 51◦58’N/2◦38’E. A tidal sand wave pattern is present with a
dominant wavelength L(d) of about 800 m (Figure 3.8a). The crest direction
in Figure 3.8 corresponds to an azimuth of 121◦ East of North. To facilitate
the presentation of the results, the grid and the depth values of Figure 3.8a are
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Figure 3.7: Measured depth ds(x) for survey s and its uncertainty at the 95% con-
fidence interval described by 1.96σs(x) in relation to (a) the true, unknown depth

ds(x) and the original variance σ
(e)2
s (x) for the measurement error es(x); (b) morpho-

logical characterization ms(x) and the original variance σ
(e)2
s (x); (c) morphological

characterization ms(x) and the increased variance σ
(em)2
s (x) for the residual r(em)

s (x).

redrawn as a contour plot, in Figure 3.9. The graphs 3.8b-d will be discussed
in Section 3.4.1.

To allow for a critical analysis of the performance of the proposed method, on
purpose an area is selected for which the sand wave pattern is rather irregular,
and the dynamics are simulated. There is a bifurcation in the crest, behind
which the pattern becomes very irregular.

As described in Section 3.2.2, the input consists of five quantities. The fixed
positions xp (quantity 1) are given at a grid with a spacing of 50 m. This is
dense enough to capture sand wave dynamics for the given wavelength L. The
orientation of the x- and the y-axis are perpendicular to and parallel to the crest
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Figure 3.8: Overview of the example: (a) gridded depth values d below Lowest
Astronomical Tide; (b) characterization m̂ of the gridded depth values, after the spatial
testing and estimation process; (c) dispersion of the gridded depth values at the 95%
confidence level, 1.96 σ(em), after the estimation of spatial variance and covariance
components; (d) residuals r̂ for the gridded depth values. All values are averages over
the six surveys. Note that all vertical axes have been exaggerated with respect to the
horizontal axes. The x-direction has the highest variability, and is also the direction
of the survey tracks. The grid lines are the lines in this direction.

direction, respectively. We surveyed this area six times in twelve years: t=[0
4 7 9 11 12]T (quantity 2), which is realistic for this part of the Netherlands
Continental Shelf, according to the present resurvey policy of the Netherlands
Hydrographic Service.

To obtain depth values dp,s (quantity 3), we assign the 2003 values to all the
surveys s, and add simulated noise with a normal distribution to each survey.
This noise represents a depth uncertainty of 0.74 m at the 95% confidence level,
except for the first survey, where we assume the uncertainty to be 1.38 m. The
higher data uncertainty might be due to bad weather during the survey, a larger
track spacing, or less accurate equipment. The above uncertainties correspond
to the IHO S44, order 1 and order 2 standards respectively, for a depth of 40 m
[International Hydrographic Organization, 2008a].
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Figure 3.9: The used grid (black dots) and depth contour lines, drawn at 2 m inter-
vals. The darkest line is the shallowest, at 35 m, and the lightest line the deepest, at
43 m.

Next, we artificially impose several types of dynamics to the 2D grids of
surveys. To this end, we consider the simulated sea floor data of each survey
as a superposition of a sloping plane and a residual pattern. The plane is
fitted through the data by a least-squares procedure, and the residual pattern
represents the sand wave. This allows us to assign simulated pattern dynamics,
independent of simulated bed level dynamics. After the addition of dynamics,
the sea floor is reconstructed by the summation of the residuals and the sloping
planes, for each survey.

We impose the following dynamics:

1. Every depth of the third survey is reduced by ∆d =−1 m, possibly because
of a systematic error in the acquisition process.

2. The magnitude of the sand wave pattern is reduced to a factor 0.5 for the
fifth survey, to incorporate the eroding effect of a storm on the sand wave
amplitude A.

3. We let the pattern migrate with a rate of ξ̇′ =8 m/yr in the positive x-
direction. For each survey, the shifted pattern is interpolated to the grid
using piecewise cubic hermite polynomials in the x-direction [Fritsch and
Carlson, 1980].
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3.3.2 Specification of uncertainty

We assume for the simulated surveys that the depth uncertainty is caused by the

vertical errors e
(v)
p,s in the depth measurement process only, see Appendix 3.A.

The depth errors due to positioning uncertainty e
(h)
p,s are assumed negligible,

because of the relatively smooth nature of the sea floor. It is also assumed that
the original data were that dense that no interpolation is needed. As a conse-

quence, we consider the interpolation error e
(k)
p,s to be zero. For many surveys,

one or both of these assumptions cannot be made, and a more complicated error
modeling might be necessary.

The variances (quantity 4) of the depth measurement errors e
(v)
p,s are modeled

according to the IHO S44 standards [International Hydrographic Organization,
2008a], which are depth dependent. Just like the simulation of measurement
noise, we assume order 1 uncertainty, except for the first survey, where we
assume order 2 uncertainty. These standards define depth accuracy at the 95%
level as:

1.96σ(e)
p,s =

√

a2 + (bdp,s)2, (3.25)

with depth dp,s, and parameters a and b, which are 0.5 m and 0.013 respectively
for order 1, and 1.0 m and 0.026 for order 2.

The most important contribution to the error e
(v)
p,s of depth measurement in

the Southern North Sea outside the territorial sea is the water level reduction. It
is common to reduce the depth measurements to a low water surface, nowadays
Lowest Astronomical Tide (LAT). Consequently, the actual water level above
this reduction surface is determined. The water level values, above the reduc-
tion surface, change relatively slowly, and are updated once every ten minutes.

The error covariance c
(e)
p,q,s (quantity 5) is therefore modeled as an anisotropic

Gaussian function, with its highest covariance in the track direction x:

c(e)s (hx) = c
(e)
0 exp (−(hx/h

(i,e)
x )2). (3.26)

A similar Gaussian function is used in the perpendicular direction y. In our
scenario, the track direction coincides with the x-direction, perpendicular to

the crest direction. The inflection points of the Gaussian function are at h
(i,e)
x

= 2500 m and h
(i,e)
y = 50 m in and across track direction, respectively. The

reduction error is assumed to be 0.2 m at the 95% confidence level, equivalent

to a variance of 0.01 m2. This value is assigned to c
(e)
0 .

3.4 Analysis results of a dynamic sea floor

The simulated dynamics of Section 3.3 are analyzed in the two steps of Sec-
tion 3.2. The results are presented in the Sections 3.4.1 and 3.4.2, respectively.

3.4.1 Results of step 1, the spatial analysis

At grid nodes larger than y= 125 m, the crest bifurcates into two less pronounced
crests. The test quotients q of step 1, given in Figure 3.10, show that the
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dominant wavelengths L(d) of the grid lines are between 600 m and 800 m
until the bifurcation. Behind the bifurcation, the wavelengths are smaller. The
dominant wavelength is most prominent at the grid lines with a negative y-
coordinate, as the values of the test quotients show. The short grid lines at
y=−375 m and y=−325 m are too short to find the dominant wavelength.
Figure 3.10b shows that the sand wave extension (with test quotient q(2)

max
)

usually is the first one to be accepted, which is usually followed by the slope
extension (with test quotient q(1)). A slope extension is accepted for every grid
line. The resulting sea floor characterization m̂ is shown in Figure 3.8b.

The difference with the depth grid is the residual variation r̂, shown in
Figure 3.8d. Large residuals are visible at the crest, in the center of the area,
because of crest-trough asymmetry. Large deviations are also visible at the
shorter lines, that are too short to detect the dominant wavelength. Clearly,
a rhythmic pattern is present at half the averaged dominant wavelength. This
illustrates the influence of asymmetry of the sand waves on the residuals.

Figure 3.10c shows that the extensions are not yet sufficient to accept the
representation, as the overall tests q(o,m) are still larger than one, after the
final iteration. We conclude that additional sea floor variation is present, to be

modeled by a variance factor σ̂(m)2
s and a covariance factor c

(em)
0,s per survey. The

variance factor obtained for the first, less accurately measured, survey is 3 m2.
For the fifth survey, for which the pattern magnitude is smaller, the variance
factor is 0.5 m2. The other surveys have variance factors of 2.0 m2 to 2.5 m2.

The covariance functions for the estimation of the covariance factors are
shown in Figure 3.11. The reduction of the pattern in the fifth survey is clearly
visible in Figure 3.11e. The other five figures are very similar to each other. The
resulting variance is given as variation at the 95% confidence level 1.96σ(em) in
figure 3.8c. The constant wavelength of the covariance functions L(em) is 388 m,
which is about half the dominant wavelength of the sand wave representations
indeed (Figure 3.10). For the first until the fifth survey, the inflection points

h
(i,em)
x,s are placed at the maximum distance of 550 m. The sixth survey has

a shorter inflection distance of 527 m, due to the effect of the noise that we
applied.

3.4.2 Results of step 2, the temporal analysis

In step 2, the procedure accepts many dynamic extensions, as shown by the
test quotients q in Figure 3.12. Table 3.1 gives a overview whether the accepted
dynamics match the dynamics specified in Section 3.3.1.

For most of the grid lines, the migration of the sand wave turns out to be
the easiest detection, as this extension has, in general, the largest test quotients
q
tr,sw

(Figure 3.12b). Moreover, it is detected in the first iteration for most of the

grid lines (Figure 3.12a). Hereafter, the two modeled outliers are detected, where
either the planar depth reduction or the reduction in magnitude of the sand wave
pattern have a larger test quotient. For some grid lines, other extensions are
incorrectly accepted, or the modeled extensions remain incorrectly undetected.
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Figure 3.10: Test results for each grid line, for step 1. (a) spatial test quotients
q(2)(L) and q(2)

max
(circles) for the sand wave extension; (b) spatial test quotients q(1)

(squares) and q(2)
max

(circles) for the slope and the sand wave extension respectively; (c)

overall test quotients q(o,m) (diamonds). The circles of Graph (a) are the maximum

values q(2)
max

, that correspond to the dominant wavelength L(d) of a grid line. A black
symbol in Graph (a) and (b) indicate a test quotient during the first iteration, and
a grey symbol a test quotient during the second iteration. Shade and size of the
diamonds in Graph (c) decrease for every next iteration.
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Table 3.1: Overview of the accepted dynamics, as a percentage of the number of grid
lines

type of dynamics specified accepted
outlying plane, survey 3 yes 94%
trend in sand wave yes 71%
outlying sand wave, survey 5 yes 64%
trend in plane no 44%
outlying plane, survey 4 no 6%
outlying plane, survey 5 no 6%
outlying plane, survey 6 no 6%



3.4. Analysis results of a dynamic sea floor 77

1

2

3

4

5
−400

−200
0

200
400

0

2

4

6

8

(a)

grid line [m]

iteration

te
s
t 
q
u
o
ti
e
n
t

−400 −200 0 200 400
0

2

4

6

8

1
1

2 2 2

3

3
3

3

3

3

3
3

3 3

3

3 3
3

3

3
4

5

5

5

5 5

5

5

5

5

5

5

6
6

6

66

te
s
t 
q
u
o
ti
e
n
t

(b)

 

 

trend in plane

trend in sand wave

outlying plane

outlying sand wave

−400 −200 0 200 400
0

0.5

1

1.5

2

2.5

grid line [m]

o
v
e
ra

ll 
te

s
t 
s
ta

ti
s
ti
c

(c)

 

 

every next iteration

corresponds to

a lighter gray

Figure 3.12: Test results for each grid line, for step 2, for the accepted extensions and
the extension with the largest remaining test quotient. (a) temporal test quotients q

a

per iteration; (b) temporal test quotients q
a
; (c) overall test quotients q(o,t). A black

symbol in Graph (a) and (b) indicate a test quotient for a trend, and a white symbol a
test quotient for an outlier. Test quotients for planar extensions are given by squares,
and test quotients for sand wave extensions by circles. The numbers in Graph (b) are
the survey numbers s for which the outlier is detected. Shade and size of the diamonds
in Graph (c) decrease for every next iteration.
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Figure 3.12c shows that the overall test quotient q(o,t) usually becomes
smaller than one, several iterations before all extensions were made. This means

that the final variances σ
(emt)2
p,s of the parameters are reduced with respect to

the variances σ
(em)2
p,s after step 1. This is as expected, as in our test scenario

the residuals are highly correlated between the surveys, as we did not introduce
any small-scale dynamics.

The grid lines at y=−375 m and y=−325 m, for which no dominant wave-
length could be found, show large overall test quotients. This is because resid-
uals are evidently larger in the absence of sand wave parameters. As a result,
the variances of the parameters are larger.

The results of the morphological analysis are presented in the Figures 3.13
to 3.16, with planar results on the left side and sand wave results on the right
side of the figures. The first survey is used as a reference, presented in the Fig-
ures 3.13 and 3.14, for the dynamic parameters. Those dynamic parameters are
presented in the Figures 3.15 and 3.16, and for the grid line y=25 m in Table 3.2.
The dominant wavelengths L(d) are given in Figure 3.14a. These wavelengths
correspond to the detected wavelengths that are shown in Figure 3.10a.
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The dominant wavelength is more or less constant over the grid lines, except
for the grid lines y ≥ 175 m, where the depth values become less structured.
Although the wavelengths decrease sharply, the reference amplitudes Aref only
gradually become smaller. This is because the 600 to 800 m wavelength gradu-
ally becomes less prominent, and at the same rate the half wavelength becomes
more prominent (Figure 3.10a). At the grid line y=175 m, the half wavelength
suddenly becomes dominant. As the amplitude is a parameter, it can change
gradually. The sudden change in wavelength also affects the position of the crest
(Figure 3.14c).

We make several observations from the Figures 3.15 and 3.16, in combination
with Figure 3.12. Firstly, we see that the simulated dynamics were found for a
majority of the grid lines, and that the parameters for all incorrectly detected
dynamics are small in comparison to their 95% confidence intervals. Also note
that a detected trend in either bed level −d(b) or slope ψ also results in a
detection of a change in the other. This is also valid for the outliers, and the
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Figure 3.14: Reference values for the parameters, equal to the values of the first
survey (continued). (a) for dominant wavelength L(d) for all surveys (also shown in
Figure 3.10a); (b) for sand wave parameter amplitude Aref ; and (c): for sand wave
parameter crest position ξ

ref
.
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Figure 3.15: Results for the temporal analysis. x-axes: grid line [m]; y-axes: results
as indicated per row and column of graphs. Columns (a) and (b): planar parameters
−d(b) and −ψ. The trends are given in row (1), and the outliers in row (2). White
circles indicate the absence of dynamics, and black circles the presence of dynamics,
including the uncertainty at the 95% confidence level, indicated by plus symbols.
The slope −ψ is expressed as vertical change in m per horizontal m, and therefore
dimensionless. The horizontal lines indicate the specified dynamics of the test scenario.
The results for the grid line y=25 m are also given in Table 3.2.

two sand wave parameters A′ and ξ′. The reason is that the extensions all
consist of two parameters, that are mutually correlated.

For a second observation, we look at row (1), containing the trends. The
presence of sand wave migration is sometimes misinterpreted as a trend in the
planar parameters (e.g. y=−175 m), sometimes an erroneous planar trend is
found in addition to the sand wave trend (e.g. y=−25 m), and sometimes no
trend is found (e.g. y=225 m). For the grid lines at y=−375 m and y=−325 m,
a planar trend was detected because no sand wave parameters are present. The
planar misdetections happen because extensions for the plane are correlated with
those for the sand wave. The two types of extensions are only independent if the
grid line length is an exact multiple of the wavelength. This misinterpretation
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Figure 3.16: Results for the temporal analysis (continued). Columns (a) and (b):
sand wave parameters A′ and ξ′.

is especially likely in the case of a small number of sand waves, as in this test
scenario.

Thirdly, we look at the outliers, in row (2). The planar outlier is estimated
correctly for almost every grid line, see the bottom graph of column (a). Their
confidence intervals are very different, though. It is clear that the least accurate
estimations are those from the grid lines where no sand wave was accepted,
because the magnitude of their residuals are larger. Accepting a representation
with a sand wave therefore also helps us to estimate planar parameters more
accurately.

The reduction in magnitude of the pattern was only found for those grid lines
where this pattern is still fairly regular, see the bottom graph of column (c).
For grid lines y ≥ 175 m, the pattern is too unstructured to detect amplitude
change.

A final observation is that there is a clear relation between the reference
amplitude of the estimated sand wave on one hand, and the amplitude factor
and migration rate on the other hand. The small amplitudes of grid lines y ≥ 175
m mean that amplitude change and migration are hard to estimate, as the large
confidence intervals for those grid lines in the graphs on row (1) of columns (c)
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Table 3.2: Results for grid line y=25 m, where the dominant wavelength L(d) is 655
m. The results (also shown in the Figures 3.13 to 3.16) include the 95% confidence
limits. The slope is expressed as vertical change in m per horizontal m, and therefore
dimensionless.

name: symbol = estimate ± uncertainty

reference depth: d
(b)
ref = 39.22 m ± 0.17 m

reference slope: ψ
ref

= 1.5·10−3 ± 0.6·10−3

reference amplitude: Aref = 3.27 m ± 0.33 m
reference crest position: ξ

ref
= −28 m ± 12 m

depth change for s=3: ∆d
(b)
3 = −1.10 m ± 0.48 m

slope change for s=3: ∆ψ
3

= 0.4·10−3 ± 1.8·10−3

amplitude factor for s=5: A′
5 = −0.45 ± 0.18

migration for s=5: ξ′
5

= −6 m ± 22 m

amplitude growth rate: Ȧ
′
= −0.01 yr−1 ± 0.03 yr−1

migration rate: ξ̇
′
= 6 m/yr ± 3 m/yr

and (d) show. For y=325 m, it results in a spurious estimation of migration,
and for y=375 m, a spurious trend in slope was detected. In spite of the listed
occasional spurious results, The Figures 3.15 and 3.16 illustrates that the general
achievement of the designed method for this challenging morphological pattern
is good.

3.5 Discussion

3.5.1 Input

As noted in Section 3.2.2, application of deformation analysis to the sea floor
imposes some requirements on the input. Firstly, the method uses depth values
and their uncertainties at equal positions for several surveys. An equal number
of grid nodes and equal nodal positions for all surveys are necessary, because a
varying spatial distribution of nodes over time could introduce false detections
of sea floor dynamics.

Secondly, the user must specify levels of significance as input. Besides the
probability of accepting an extension, they also express the relative importance
of detection of the defined extensions. Therefore, those levels of significance can
vary with the goal of an analysis.

Thirdly, we need some a priori knowledge of the sea floor morphology: the
direction of the sand wave pattern to define the grid, second order stationarity
for the morphological residuals of the area to describe the covariance function
of the residuals, and uniform morphodynamics per grid line to estimate dy-
namics correctly. A pattern will only be detected if it is regular enough to be
approximated by a sine function.
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The auto-covariance function initially serves to quantify correlations between
measurements caused by the measurement and interpolation processes. For sim-
plicity, all covariances are often assumed zero [e.g. Calder, 2003]. This assump-
tion is incorrect if e.g. significant water level reductions have to be applied, as is
the case for the Southern North Sea (see Section 3.3.2). Water level reductions
have by far the largest impact on the error budget [Dorst, 2004].

However, a simplified modeling of the initial variances and covariances has
only limited impact, as the estimation of variance and covariance components
changes the initial covariance function into a combined function for uncertainty
in all errors and the residual morphological variation. Such an auto-covariance
function, or the equivalent semi-variogram, is known in hydrography to charac-
terize morphological variation [e.g. Robert and Richards, 1988], or to estimate
the weights of the interpolation procedure known as Kriging [e.g. Calder, 2006;
Chilès and Chauvet, 1975].

3.5.2 Dimensions

In a two-dimensional space, four different approaches are possible. A zero-
dimensional approach describes depth at a point (x, y) independent of the sur-
rounding depth values. A one-dimensional approach defines cross-sections in
the directions x or y, and a two-dimensional approach defines a surface. An
analysis in one dimension in the crest direction would not have given us any
sand wave parameters, but could be useful to analyze the behaviour of one crest
or trough in relation to the others.

Although results of the other approaches are also available, we presented
our approach here for one dimension in x-direction only. The best approach is
discussed in Chapter 6. If we would have chosen a zero-dimensional approach
for this combination of dynamics, the detected dynamics would have been highly
unorganized, and very difficult to interpret. Such an approach is useful though
to identify dynamic sub-areas of the grid, and consequently to redefine the extent
of areas correspondingly.

In the case of a two-dimensional approach, we would not have been able to
adapt the wavelength per grid line, which would have resulted in larger residuals
for less regular areas, like the one used in our example. This causes larger
elements in the covariance matrix used as input for step 2, which in turn reduces
the power of the tests, and makes the estimates less accurate. The dynamics
defined in the example would not have all been found by a two-dimensional
analysis.

3.5.3 Interfering patterns

For patterns that are two-dimensional, or for two interfering patterns in different
directions, the characterization of a single pattern direction is insufficient. Such
interfering patterns are found by Knaapen et al. [2001]. Wave crests with limited
length potentially migrate in a different direction than perpendicular to the crest
direction, which remains undetected with the current spatial representation. If
there is a clear difference in scale of the patterns, the size of the analyzed
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grids influence the pattern that is selected as dominant. A pattern with a long
wavelength is represented by a slope for short grid lines, and a pattern with a
short wavelength is represented by morphological residuals for long grid lines.

For two interfering patterns, one-dimensional analyses in both the pattern
directions could be made, instead of a single analysis in the direction of highest
variability. Usually, the direction of highest variability does not correspond to
any of the two interfering patterns. An option for the two-dimensional analysis
is the definition of a spatial representation of two sand waves with different
wavelengths and in different directions. Sand waves with a limited crest length
could be represented by a second perpendicular wavelength. This way, along-
crest migration is also detected, as reported by e.g. Van Dijk and Egberts [2008]
for the Netherlands Continental Shelf.

3.5.4 Design of the testing procedure

In Section 3.2.5, we applied the B-method, on which we based our approach. We
differ from the original B-method in two ways. In the first place, the B-method
uses an overall test in every iteration, to decide if another extension is needed. In
the second place, the B-method restarts the iteration procedure for the selection
of the characterization, after the extension of the covariance matrix. The first
adaptation in the procedure is made because we do not use the extensions
to describe single blunders and systematic errors in the measurements, but
to describe a more complex physical situation, by detecting as many types of
dynamics as possible. The second adaptation is made because we do not assume
that the reason for an extension is an additional component in our error budget,
but the inevitably incomplete characterization of the sea floor.

Instead of adding more extensions to the characterization until the overall
test is accepted, we describe the remaining variability using additional variance
and covariance components for these morphological residuals. In this way, we
do not introduce unnecessary parameters. The consequences are that it is easier
to detect dynamics for a more regular sea floor, and that the detected dynamics
are described more accurately for such a sea floor.

3.5.5 Design of the morphological representation and dispersion

There are two approaches to the calculation of variances and covariances. The a

priori approach is able to calculate covariances before the actual measurements
are done. If the covariances of all uncorrelated components are known before-
hand, the combined covariance is the sum of the covariances. The calculation of
c(e)(h) from the error components of Appendix 3.A is an example of that. The
other approach is the a posteriori approach, which calculates covariances from

the residuals r
(e)
p,s.

The estimation of variances and covariances means a switch from the a priori
to the a posteriori approach, by replacing Cd,old by Cd,new. This implies we may
not take some systematic error components into account anymore, that are part
of the a priori error. Because these systematic components vary little over the
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area considered, they are included in the estimation of the morphological trend,
and are therefore not present in the residuals anymore.

We distinguish between planar and sand wave parameters, because of cor-
relations between the parameters within each group. If the grid line does not
contain exactly an integer number of sand waves, the sand wave and the planar
parameters are correlated as well, causing false detections. This effect is espe-
cially prominent because we generally work with areas that have a size of a few
times the wavelength only. A decrease of the levels of significance can improve
the detection process, meanwhile increasing the risk of missing true dynamics.

The introduction of additional sea floor parameters might improve the anal-
ysis: the modeling of sand wave asymmetry, or additional extensions for more
types of dynamics. However, an increase in the number of parameters of a char-
acterization, without changes to the amount or uncertainty of the depth data,
will decrease the test quotients and thereby the power of each test, and also
increase the uncertainty of the estimate of each parameter.

3.5.6 Relation to morphodynamic models

A first morphodynamic application of this method is the estimation of pattern
migration. A linear trend in time is not only estimated from the positions
of crests and troughs, but the shift of the pattern as a whole is considered.
Appendix 3.B shows that a linear trend in sand wave migration can only be
approximated by a linear trend in A(c) and A(s) for a limited time span, and
that the maximum value of outliers is limited.

A second morphodynamic application is the estimation of pattern growth.
The estimate for amplitude A does not describe the total amount of spatial
variation within the area, as its value depends largely on the regularity of the
pattern. For example, compare the depth variations in the example with the
estimated reference amplitudes. Consequently, a change in sand wave regularity
would appear as a falsely detected change in amplitude.

Idealized, process-based morphological models have been applied to sand
wave areas in the Southern North Sea by Van der Veen et al. [2006] and Hulscher
and Van den Brink [2001]. Process-based models are able to explain linear
migration from the flow and sediment characteristics of the physical system
[Németh et al., 2007; Besio et al., 2008]. Unlike our representation for linear
growth, model predictions for sand wave growth are initially exponential in
those models, usually damped by a higher order term for larger amplitudes.
For instance, the non-linear Landau equation is a common description of such
growth [Knaapen and Hulscher, 2002]. Parts of this growth curve can be ap-
proximated by a linear trend, especially if the sand waves have almost reached
their equilibrium heights. We should keep the time span limited, though, and
we should not combine surveys from before and after a dredging operation in
an analysis.

Introducing a Landau equation for sand wave growth implies that we will
have to apply a linearization first. Knaapen et al. [2005] show that such a change
improves the approach of Wüst [2004]. We expect that an improvement could
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be made for the estimation of sand wave growth with deformation analysis as
well.

Extreme meteorologic conditions and human interventions cause sudden
changes in morphology [Terwindt, 1971; Knaapen and Hulscher, 2002]. In the
present design, such a change is described by a series of outliers, which gives
useful information on such an event. For an optimal estimation of the regen-
eration of a pattern, it is possible to formulate a specific extension, by a trend
that starts after an extreme event. A series of outlying surveys is an indication
for this type of behaviour.

3.6 Conclusion

We have presented a statistical procedure to detect and estimate sea floor dy-
namics. A test scenario was set up as a realistic situation for the Southern North
Sea: the morphology is based on measured data, and the morphodynamics were
inspired by results of others [Wright, 1992; Langhorne, 1982b; Terwindt, 1971].
The presented results clearly show that a simple morphological representation
can be used for the analysis of sea floor dynamics of the morphologically com-
plicated area that we presented, as the sea floor dynamics from the test scenario
were detected and estimated well.

Therefore, we conclude that the monitoring of areas of the sea floor using de-
formation analysis is a useful method to acquire insight into the past behaviour
of the sea floor, even for morphologically complicated areas. The method gives
parameter estimates for the deformations that include their uncertainties. A
characterization that consists of a sloping plane and a sinusoidal wave is suffi-
cient to analyze dynamics in tidal sand wave areas, including sand wave growth
and migration. Such a characterization gives a good balance between a limited
number of parameters and limited parameter uncertainty.

Appendices

3.A Error characteristics

The error e(x, y, t), see equation (3.1), at point p, and during survey s is denoted
ep,s. It is the sum of several error sources:

ep,s = e(v)
p,s + e(h)

p,s + e(k)
p,s. (3.27)

These sources are:

1. the combined influence of all processes involved in depth measurement

e
(v)
p,s;

2. the influence of horizontal position measurement on depth e
(h)
p,s , due to the

incorrect location;

3. the potential influence of interpolation e
(k)
p,s, using e.g. Kriging.
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To describe the error covariances c
(k)
s , we assume the spatially statistical con-

straint of stationarity is satisfied. The error is first order stationary, because its
expected value E{e} equals zero for every position (xp, yp). It is also second or-

der stationary, if, in addition, the covariances between the errors do not depend
on position, but only on the distance vector h, which has magnitude ‖h‖ = h.
The auto-covariance between measurement errors of survey s at two positions

is then expressed as c
(e)
s (h), for all h including the variance c

(e)
s (0) = σ

(e)2
s .

The variance is a discontinuity in the covariance function if parts of the
error budget are uncorrelated between measurements, which means that the
variance is larger than any value of the covariance function. This is called a
nugget effect. The auto-covariance function is required to be positive-definite.
We assume second-order stationarity for h 6= 0 only, and therefore define h > 0.

Hence, we allow for the calculation of a variance σ
(e)2
p,s per depth value, as is often

necessary in hydrography. For instance, the uncertainty of a depth measurement
depends on depth itself [International Hydrographic Organization, 2008a].

3.B Transformation of the sand wave parameters

The deformation analysis leads to estimates A(c) and A(s) of the provisional
sand wave parameters A(c) and A(s), along with their variances σ(c)2 and σ(s)2,
and their mutual covariance c(A(c), A(s)). The original parameters, i.e. the sand
wave amplitude A and the horizontal crest position ξ that are defined in equa-
tion (3.8), then follow from the transformation

f =

[

A
ξ

]

=

[
√
A(c)2 +A(s)2

arctan(A(s)/A(c))/κ

]

. (3.28)

Because this is a nonlinear transformation, the detection of linear trends in
the provisional parameters A(c) and A(s) does not correspond to the detection
of linear trends in the original parameters A and ξ. Instead, this leads to a
nonlinear evolution of both A and ξ (Figure 3.17, top row). Conversely, a linear
trend in the original parameters A and ξ implies nonlinear behaviour of both
A(c) and A(s) (Figure 3.17, bottom row). However, for realistic values of growth
and migration, these nonlinearities only become visible on very large time scales.
On realistic time scales of approximately a decade, the curves in Figure 3.17 are
safely approximated by linear relationships.

Linear trends in the provisional parameters thus lead to linearized trends in
the original parameters. The corresponding trend parameters are given by

ḟ =

[

Ȧ

ξ̇

]

≈ F

[

Ȧ(c)

Ȧ(s)

]

. (3.29)

in which F is the Jacobian matrix of the function f in equation (3.28), given by

F =





A(c)√
A(c)2+A(s)2

A(s)√
A(c)2+A(s)2

− A(s)

κ(A(c)2+A(s)2)
A(c)

κ(A(c)2+A(s)2)



 . (3.30)
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Figure 3.17: The effects of linear trends in the provisional parameters A(c) and A(s)

on the evolution of the original parameters A and ξ, and vice versa. Top row: (a)
imposing linear trends on A(c) of +0.01m/yr (solid), and A(s) of −0.03 m/yr (dashed)
leads to nonlinear evolution of both (b) A and (c) ξ. Bottom row: (b) imposing an
increase in sand wave amplitude of +0.015 m per year, and (c) a migration of +2 m
per year leads to a nonlinear evolution of (a) A(c) (solid) and A(s) (dashed) in time.

Also with respect to outliers, we may linearize to transform an outlier in terms
of the provisional parameters into an outlier in terms of the original parameters:

∆fs =

[

∆As

∆ξs

]

≈ F

[

∆A
(c)
s

∆A
(s)
s

]

. (3.31)

To warrant the validity of this linearization, the deviation of an outlier should
be small with respect to the general values.

Using equation (3.28) to transform the provisional parameter estimates A(c)

and A(s) back to the original parameter estimates A and ξ, their variances
propagate according to

Cf = F

[

σ(c)2 c(A(c), A(s))

c(A(c), A(s)) σ(s)2

]

FT. (3.32)

The matrix Cf contains the variances of the original estimates, as well as their
covariance. The transformations of the sand wave change parameters, presented
in equations (3.29) and (3.31), use a similar relation for the propagation of their
variances and covariances.

The covariance matrix of the estimates for the final parameters A′ and ξ′ in

vector f ′ follows from their relation with the original parameters estimates A
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and ξ in vector f :

f ′ =

[

1/Aref 0
0 1

]

f −
[

0
ξ
ref

]

;

Cf
′ =

[

1/Aref 0
0 1

]

Cf

[

1/Aref 0
0 1

]

. (3.33)

Note that the transposed-symbol of the last matrix of the second line has been
omitted, because this matrix equals its transpose.

3.C The application of statistical estimation and testing

3.C.1 Introduction

Statistical estimation and testing has many different applications [Stuart et al.,
1999; Lehmann, 1986]. One of them is the analysis of a series of surveys [Teu-
nissen, 2000, 2001].

The estimation of the parameters of a specific representation is treated in
Appendix 3.C.2. The significance of a set of parameters is assessed using statis-
tical tests in Appendix 3.C.3. The approach to test several sets of parameters is
given in Appendix 3.C.4. Thereafter, overall fit of the representation is tested
by an overall test, as shown in Appendix 3.C.5. Minimal detectable biases are
introduced in Appendix 3.C.6, with the aim to define levels of significance in
Appendix 3.C.7. These levels of significance are valid for one degree of free-
dom. To allow for the comparison of several extensions with different numbers
of degrees of freedom, we follow the procedure of Appendix 3.C.8.

3.C.2 Parameter estimation

Our estimations are Best Linear Unbiased Estimations (BLUE), meaning that
the estimates û have minimal variance, depend linearly on the data, and that
the expected value of the estimates equals the mean. If the measured depth
values have a Gaussian distribution, a best estimator equals the most likely
estimator (MLE). In this case, adjustment theory states that the BLUEs of the
sea floor parameters are calculated as the least squares solution

û = CuA
TC−1

d d; Cu = (ATC−1
d A)−1. (3.34)

The N × N covariance matrix Cu is the covariance matrix of the estimators,
having their variances σ2

u on the main diagonal. The calculation of the dynam-
ics of the amplitude and crest position, as well as their variances, are further
discussed in Appendix 3.B.

The estimators m̂ for the depth values give the morphological characteriza-
tion. They are calculated by

m̂ = Aû; Cm = ACuA
T. (3.35)

The estimated residuals are:

r̂ = d − m̂; Cr = Cd − Cm. (3.36)
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The values of these estimated residuals in relation to the covariance matrix Cd

will influence the decision whether the representation is sufficient, and which
parameters improve the representation most.

3.C.3 Extension testing

In Section 3.2.4, we introduced the original representation R0 (or R(0)) and al-
ternative representations Ra (or R(a)). To find the best characterization of the
sea floor, we compare the original representation R0 to an alternative represen-
tation Ra by a statistical test. In this context, we speak of the test of the null

hypothesis against an alternative hypothesis. The additional parameters used in
the alternative hypothesis are put in a Q× 1 vector v, and their coefficients in
a M × Q matrix B. The original coefficient matrix and parameter vector are
denoted A0 and u0. The product Bava forms the extension of Ra:

R0 : E{d} = A0u0;

Ra : E{d} = A0u0 + Bava. (3.37)

The number of new parameters Q is called the number of degrees of freedom of
the extension.

Both the hypotheses are so-called composite hypotheses, which require a
generalized likelihood ratio (GLR) test. First, we estimate the parameters of
R0, see Appendix 3.C.2. The test statistic T a for representation Ra is based on
the residuals of the estimation procedure:

T a = r̂TC−1
d Ba(BT

a C−1
d CrC

−1
d Ba)−1BT

a C−1
d r̂. (3.38)

This test statistic has a χ2(Q, 0)-distribution if R0 is true, and a χ2(Q, λa)-
distribution if a Ra is true. The noncentrality parameter λa is given by:

λa = vT
a BT

a C−1
d CrC

−1
d Bava. (3.39)

More details on λa are given in the appendices 3.C.6, 3.C.7 and 3.C.8.

The test statistic T a is compared to a critical value k: Ra is accepted if

T a > k. (3.40)

If R0 is true, it can still be rejected with probability α, due to the mislead-
ing influence of the vector of the measurement errors and residuals, r. The
probability α is called the level of significance. We specify α according to Ap-
pendix 3.C.7, and subsequently kα follows from evaluating χ2(Q, 0): α is the
integral of χ2(Q, 0) over k ≥ kα. A small level of significance α is desirable,
but it implies a large probability β that R0 is accepted although, in fact, Ra is
true. Therefore, a suitable value for kα depends on a trade-off between these
two risks. A test that maximizes the power γ = 1−β for a given α is called most

powerful. The power is the probability of correctly accepting representation Ra.
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Figure 3.18: Flow diagram for the selection of the characterization. This diagram is
a more detailed view of the top panel of Figure 3.4.

3.C.4 Subsequent acceptance of extensions

Our approach allows us to compare tests statistics with different degrees of
freedom Q simultaneously. Also, different levels of significance α can be chosen
for each extension. This way, we determine the characterization by combining
extensions, which is the first part of the process (Figure 3.4). This part is shown
in more detail in Figure 3.18.

As both these parameters α and Q influence the critical value k, we need to
consider the test statistics T a in relation to k. To this end, we define the test
quotient q

a
:

q
a

= T a/kα,Q. (3.41)

The most likely representation Ra is the one with the largest q
a
, provided all

extensions have the same number of degrees of freedom Q. The characterization
is accepted if its test quotient is larger than one.

If the extensions have a different Q, the procedure of Appendix 3.C.8 is
followed. According to this procedure, the most likely hypothesis is the one
with the largest q

a
, where α, and therefore kα, depends on Q. Representation

R0 is replaced by representation Ra if

q
a
> 1. (3.42)

As shown in Figure 3.18, the remaining extensions are evaluated again after
replacing the representation R0 by an Ra. For example, after the i-th iteration,
the previous representation Ra1,a2,···,ai−1 is updated to the next representation
Ra1,a2,···,ai

, using extension Bai
vai

. This procedure continues until q
a
≤ 1 for all

remaining extensions. The iteration process also stops if all possible extensions
have subsequently been accepted. As an example, the selection process of the
representation for step 1 is given in Figure 3.5.

3.C.5 The overall test and the final estimation

The overall test follows from the selection of the characterization, as it decides
whether it is necessary to add new components to the dispersion (Figure 3.4).
This is shown in Figure 3.19. The overall test is the widest test possible. In this
case, we have Q = M − N degrees of freedom. This implies that we test the
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Figure 3.19: Flow diagram for the composition of the dispersion. This diagram is a
more detailed view of the middle panel of Figure 3.4.

final representation, having an N × 1 parameter vector, against an alternative
representation that has a M × 1 parameter vector of the same length as the
vector of depth values.

The calculation of the overall test statistic T (o) follows equation (3.38). It
simplifies to

T (o) = r̂TC−1
d r̂. (3.43)

We define its quotient

q(o) = T (o)/(M −N), (3.44)

as a test statistic for the overall test. This test statistic has a central Fisher
distribution F (M −N,∞). In Section 3.D.5, we will use this test statistic q(o)

for the variance component estimation.

The representation is accepted if

q(o) ≤ 1, (3.45)

which means that the residuals r̂ are that small that they are sufficiently de-
scribed by covariance matrix Cd,old. The dispersion remains equal to this ma-
trix:

Ra,old : D{d} = Cd,old. (3.46)

If the representation is rejected, we add new components to the elements of this
covariance matrix, in such a way that the overall test is accepted. This results
in matrix Cd,new:

Ra,new : D{d} = Cd,new. (3.47)

The two representations Ra,old and Ra,new are the ones without and with an
added covariance component, respectively. The estimation of additional covari-
ance components is described in Appendix 3.D.

The resulting representation is used for another adjustment as in equa-
tion (3.34). This gives us the final estimates for the parameters in û and their
uncertainties Cu (Figure 3.20), which finalizes the estimation procedure.
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Figure 3.20: Flow diagram for the calculation of the final estimates and their uncer-
tainties. This diagram is a more detailed view of the bottom panel of Figure 3.4.

3.C.6 Definition of minimal detectable biases

In case of an extension with one degree of freedom, Q = 1, the matrix Ba

reduces to an M × 1 vector ba, and the vector va to a single parameter va, see
equation (3.37). Using equation (3.39), we find a relation between the value of
va that is minimal detectable for a criterion with a probability of the power γ:

|va| =

√

λa

bT
a C−1

d CrC
−1
d ba

(3.48)

The noncentrality parameter λa depends on the chosen level of significance α
of the test, the definition of the extension (via its number of degrees of freedom
Q), and the power γ of the test: λ = λ(α,Q, γ). Setting the power γ to 50%,
like in Appendix 3.C.8, and with Q = 1, we find a relation between the Minimal

Detectable Bias (MDB) and the level of significance: |va| = |va|(α).
This relation can be used to make statements like: ”if we test using a level

of significance α, a bias of magnitude |va| can be found with a probability of
power γ.” Larger biases can be detected with a higher probability, and smaller
biases with a smaller probability. Even a very small bias can be found, with a
small probability, but a very large bias will remain undetected with a certain
small probability as well.

3.C.7 Levels of significance for specific criteria with one degree of
freedom

The choice of the levels of significance αa for the various alternative represen-
tations Ra determines the critical values kα, and thereby directly influences the
values of the test quotients q

a
. For every level of significance, an MDB can

be calculated. This quantity helps us to find suitable levels of significance for
specific morphological criteria.

Consider, as an example, a sea floor without a slope, but with a sand wave
pattern that is perfectly sinusoidal along a grid line of 1000 m length. The
sand wave has a wavelength L of 750 m and does not migrate. This sand
wave is described by the single parameter A, its amplitude, and the sand wave
extensions have one degree of freedom only, denoted by Q = 1.
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Depth values are available at a grid with a spacing of 50 m. Their 95%
confidence limit is set at according to the IHO S44 order 1 standard (see Sec-
tion 3.3.2) for a bed level of 40 m at 0.72 m, so the variance of the measure-
ments is σ(e)2=0.13 m2. The covariance function c(e)(h) of the measurements is

a Gaussian function, with its inflection point h
(i,e)
x at 2500 m and the covariance

at very small distances c
(e)
0 at 0.01 m2, corresponding to a 95% confidence limit

of 0.2 m. A grid line is measured six times with an interval of two years, so the
total time interval is 10 years.

We have the following criteria for the spatial sand wave test, the linear sand
wave trend test, and the sand wave outlier test:

1. criterion for sand wave test: the minimal detectable amplitude |A| should
be 0.25m for a single survey, with a probability of γ = 50%;

2. criterion for linear trend test: the minimal detectable linear trend in time
for the amplitude |Ȧ| should be 0.025m/yr or 0.25m over the total time
interval, with a probability of γ = 50%, in the absence of any other dy-
namics;

3. criterion for outlier test: the minimal detectable outlier for the amplitude
|As| in survey s should be 0.25m, with a probability of γ = 50%, in the
absence of any other dynamics.

The resulting levels of significance αa are 3%, 4% and 3% for the three cri-
teria, respectively. These results are obtained using the relation |va| = |va|(α),
found in Section 3.C.6. The noncentrality parameter λa is found using equa-
tion 3.39, and αa follows from λa using the relation λ = λ(α,Q = 1, γ = 50%),
also found in Section 3.C.6. The levels of significance for the spatial slope test,
the linear planar trend test, and the planar outlier test are chosen equal to the
corresponding sand wave test.

3.C.8 Levels of significance for extensions with several degrees of
freedom

The B-method for simultaneous testing of several hypotheses with different num-
ber of degrees of freedom, and therefore different distribution functions, was
developed by Baarda [1968].

The choice of the level of significance α for an hypothesis with Q degrees of
freedom follows in several steps from the definition of a level of significance α1

for a hypothesis with one degree of freedom. An example for α1 = 4% is given
in Figure 3.21. In this process, the noncentrality parameter λ plays a central
role. As discussed in Appendix 3.C.6, λ = λ(α,Q, γ).

We start with the defined level of significance α1 and the known number of
degrees of freedom Q, and set the power γ to 50%, as advised by De Heus et al.
[1994]. The steps in this process are:

1. calculate kα,1: we define an α1 for the imaginary situation that the present
extension has one degree of freedom, which sets kα,1, as α1 is the integral
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of χ2(1, 0) over kα,1 to infinity. The function χ2(1, 0) is shown by the solid
line in Figure 3.21a, and kα,1 by the vertical line;

2. calculate λ: now, λ(α, 1, γ) follows from the choice of the power γ, as γ
is the integral of χ2(1, λ) over kα,1 to infinity. The function χ2(1, λ) is
shown by the dashed line in Figure 3.21a. To obtain distribution func-
tions χ2(Q, λ), for any number of the degrees of freedom Q, we keep the
noncentrality parameter λ(α,Q, γ) in χ2(Q, λ) constant, at its value for
λ(α, 1, γ);

3. calculate kα,Q: The power γ is the integral of χ2(Q, λ) over kα,Q to infinity.
This defines the critical value kα,Q. Functions χ2(Q, λ) are shown by the
dashed lines in Figure 3.21a-c, and kα,Q by the vertical lines;

4. calculate αQ: The level of significance αQ is the integral of χ2(Q, 0) over
kα,Q to infinity. Functions χ2(Q, 0) are shown by the solid lines in Fig-
ure 3.21a-c.

In Appendix 3.C.7, we used levels of significance of 3% and 4%. The example
of Figure 3.21 uses α1 = 4%. The noncentrality parameter λ is 4.22, and the
critical values k4%,Q are 4.22, 5.26 and 6.29, for one, two and three degrees of
freedom Q respectively. If α1 = 3%, the noncentrality parameter λ is 4.71, and
the critical values k3%,Q are 4.71, 5.75 and 6.77.

3.D The estimation of covariances

In general, variances at a position (x, y), and covariances between positions
are stored in a covariance matrix. An iterative procedure for the estimation
of components of such a matrix is given in Section 3.D.1. In some cases, it
is possible to determine the elements of a covariance matrix in a direct, non-
iterative, way. For instance, if the covariances describe second-order stationary
residuals (Appendix 3.A), we could also express covariances in a covariance
function (Section 3.D.2).

In step 1 (Sections 3.D.3 and 3.D.4), we use both the iterative procedure
and a non-iterative solution based on the estimation of a covariance function
(Section 3.D.1). In step 2 (Section 3.D.5), we use a very simple non-iterative
solution based on the overall test (Section 3.C.5).

3.D.1 The estimation of a covariance matrix

To include an additional stochastic influence in a covariance matrix Cd,old, the
procedure of least squares variance component estimation [Teunissen and Amiri-
Simkooei, 2008; Amiri-Simkooei, 2007] is available. In this approach, the original
covariance matrix Cd,old is replaced by a new covariance matrix Cd,new. To this
end, K cofactor matrices Dd,k are added, which are symmetric and mutually
uncorrelated. This is expressed as:

Cd,new = Cd,old +

K
∑

k=1

fkDd,k. (3.49)
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Figure 3.21: Functions describing χ2-distributions, used to illustrate the calculation
of critical values for a level of significance of α1 of 4%, using a power γ of 50%. (a)
one degree of freedom; (b) two degrees of freedom; (c) three degrees of freedom.

The relative contribution of each cofactor matrix Dd,k is determined by the

scalar factors fk. Estimates f̂
k

for these factors are obtained from the resid-
uals, using a linear least squares procedure, similar to the one given in Ap-
pendix 3.C.2, see Teunissen and Amiri-Simkooei [2008]; Amiri-Simkooei [2007].
In this procedure, the covariance matrix Cd,new has to be used. Therefore, we
must calculate the matrix Cd,new iteratively.

3.D.2 The estimation of a covariance function

Let us define hx ≥ 0 as the distance in x-direction. The empirical function of

covariances c
(emr)
s [hx] is derived at discrete distances from the realized residuals

r
(em)
p,s . (The letters e, m and r between the parentheses denote the influence of

measurement error, morphology and the discrete realization respectively, and
the square brackets indicate the discrete character of this covariance function.)

The covariance function c
(em)
s (hx) in this direction follows from the fit of a

positive-definite function on the empirical function c
(emr)
s [hx]. More details are

found in Chapter 2.

To obtain a sufficient number of pairs of residuals at the required distances,
it is necessary to calculate one empirical function for the full grid of P nodes,
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instead of one empirical function per grid line. Hereby, only covariances between
grid nodes on the same grid line are taken into account. The maximum distance
for which a covariance is calculated is half the maximum grid line length, to
guarantee a sufficient number of pairs at all distances. The sampling density of
the empirical function equals the spacing of the grid.

The positive definite covariance function c
(em)
s (hx) that we use is the product

of a Gaussian and a cosine function:

c(em)
s (hx) = c

(em)
0,s exp (−(hx/h

(i,em)
x,s )2) cos(κ(em)hx). (3.50)

The 2S+1 parameters involved in this fit are the covariance c
(em)
0,s per survey for

distances approximating zero, the Gaussian inflection point h(i,em)
x,s per survey,

and one wave number κ(em) for all surveys. The cosine function is necessary
to account for the rhythmic patterns in the residuals. This is due to e.g. the
approximation of asymmetric sand waves by a sinusoidal function, which results
in a wavelength L(em) in the residuals. This wavelength L(em) = 2π/κ(em) equals

then about half the estimated constant wavelength L(d) of Section 3.2.5. We first

estimate the three parameters c
(em)
0 , h(i,em)

x , κ(em) for all surveys, using all data.
Hereafter, we use wave number κ(em) for every survey, and estimate covariances

c
(em)
0,s and inflection points h(i,em)

x,s again per individual survey.

3.D.3 The estimation of a covariance matrix in step 1 for a single
survey

The variance component estimation of step 1 uses two cofactor matrices Dd,k per
survey, defining the structure of the additional components (Section 3.D.1). This
means we use K = 2S cofactor matrices in total, with size M ×M , M = PS.
Let us first consider the variance component estimation per survey, after which
we will present the estimation for all S surveys. The P × P matrices that only
contain the elements at positions p for a single survey s are denoted Cd,s and
Dd,s.

We assume that the morphological residuals r
(m)
p,s are second order stationary

(Appendix 3.A), for distances hx ≥ 0 with hx the distance in x-direction. For
errors ep,s, we made this assumption for h > 0 only. The assumptions enable

us to express the combined covariances per survey as c
(em)
s (hx), for hx > 0,

using equation (3.50). The results of the evaluation of this function are given

on the non-diagonal elements of a matrix C
(em,c)
d,s , for which the diagonal only

contains zeros. (The letter c denotes that this matrix only contains covariances
for hx > 0.)

As the errors ep,s are not assumed second order stationary for hx = 0,

the variances on the diagonal of the covariance matrix C
(e)
d,s are in general not

constant. These diagonal elements are used for the matrix Cd,old, that we

denote here as C
(e,v)
d,s . The morphological variances are given in a separate

matrix C
(m,v)
d,s . (The letter v denotes that this matrix only contains variances.)
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The covariance matrix C
(em)
d,s therefore consists of the following components:

C
(em)
d,s = C

(e,v)
d,s + C

(m,v)
d,s + C

(em,c)
d,s . (3.51)

Firstly, we estimate C
(m,v)
d,s , using the iterative procedure of Section 3.D.1. A

single factor σ̂(m)2
s is estimated, using the cofactor matrix D

(m,v)
d,s that we define

as the P × P identity matrix:

C
(em,v)
d,s = C

(e,v)
d,s + σ̂(m)2

s D
(m,v)
d,s . (3.52)

An advantage of removing the covariances from C
(e)
d,s is that the procedure is

less time-consuming without covariances. The resulting factor is the spatially

constant morphological variance σ̂(m)2
s . The combined variances σ

(em)2
p,s = σ

(e)2
p +

σ̂(m)2
s are in general not constant over survey s, because the error variances σ

(e)2
p

usually differ per position p.

Secondly, we use the positive-definite covariance function of Section 3.D.2 to

calculate the elements of C
(em,c)
d,s , as discussed above. Expressed in the termi-

nology of variance component estimation, the non-diagonal elements of cofactor

matrix D
(em,c)
d,s are specified using the positive-definite covariance function, with

c0,s = 1, and the diagonal elements are zero. The parameter c0,s is the factor.
The result is:

C
(em,c)
d,s = c0,sD

(em,c)
d,s . (3.53)

A second advantage of removing the covariances from C
(e)
d,s is that it has pre-

vented us from following the iterative procedure for the estimation of the co-
variances, and instead we use the more straightforward estimation procedure
for covariance functions.

3.D.4 The estimation of a covariance matrix in step 1 for all surveys

The final covariance matrix C
(em)
d for all S surveys has size M × M , with

M = PS. Therefore, the elements of each P × P matrix Cd,s are used as the
non-zero elements of an M ×M matrix Cd,k. The final expression is:

C
(em)
d = C

(e,v)
d +

S
∑

k=1

C
(m,v)
d,k +

S
∑

k=1

C
(em,c)
d,k . (3.54)

The overall test statistic q(o) of step 1 decides if an additional morphological

component is necessary, therefore we denote it as q(o,m). Because of the adapta-

tion of every element in the old covariance matrix C
(e)
d , the overall test statistic

q(o,m) of the new representationR(a,em) equals one, if we would calculate it again

after the variance component estimation. The new covariance matrix C
(em)
d is

used as the dispersion of the depth values in step 2.
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3.D.5 The estimation of a covariance matrix in step 2

We use the present covariance matrix C
(em)
d both as Cd,old and as the only

cofactor matrix Dd,k, and therefore K equals one (Section 3.D.1). The single

factor 1 + f̂ equals the overall test statistic q(o) of phase 2. To distinguish it

from the overall test quotient of step 1, we denote it as q(o,t). For step 2, this
means:

C
(emt)
d = q(o,t)C

(em)
d . (3.55)

The single variance factor is always applied, also if it is smaller than one, and
therefore the overall test after the variance component estimation is one again,
as in step 1. In case the variance factor is smaller than one, apparently the
differences between the residuals of each survey are smaller than described by
the covariance matrix. This means the dynamics at small scales are correlated
between the surveys.
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Chapter 4

The analysis of migrating tidal sand

waves in an anchorage area in the

Southern North Sea⋆

Abstract

The analysis of a series of offshore bathymetric surveys provides insight into the mor-

phodynamics of the sea floor, which helps to improve resurvey policies for nautical

charting. We show results for the anchorage area Maas West near the Port of Rotter-

dam, the Netherlands. We use a method called deformation analysis, which is based

on statistical testing theory. Our implementation of the method particularly aims to

detect dynamics in tidal sand wave patterns. It results in parameter estimates for

the sand wave dynamics, and their uncertainty. The area is divided into 18 subareas.

The results show that a sand wave pattern is detected for most of the subareas, and a

shoreward migration is detected for a majority of them. The estimated migration rates

of the sand waves are up to 7.5 m/yr, with a 95% confidence interval that depends on

the regularity of the pattern. The results agree with previously observed migration

rates for the Southern North Sea, and with an idealized process-based model.

4.1 Introduction

The sea floor of shallow seas is dynamic. For example, rhythmic morphological
patterns on sandy beds can change height and migrate [Wright, 1992; Terwindt,
1971], thereby possibly endangering navigation through busy shipping lanes.
Such patterns exist on many scales [Knaapen et al., 2001]. In this paper, tidal
sand waves are considered, which are widely present throughout the North Sea
(Western Europe). They are characterized by a wavelength of hundreds of
meters, a height of several meters, and a migration rate of up to several meters
per year. The evolution of the sea floor can be interpreted from a series of echo
sounder surveys, as has recently been done for the Southern North Sea by e.g.
Dorst et al. [2007]; Knaapen [2005]; Van Dijk and Kleinhans [2005]. A method
called spatial cross-correlation [Van Dijk and Egberts, 2008; McElroy et al.,
2008; Buijsman, 2007; Duffy and Hughes-Clarke, 2005] has recently been used

⋆ This chapter is similar to L. L. Dorst, P. C. Roos, F. M. Sterlini and S. J. M. H.
Hulscher. The analysis of migrating tidal sand waves in an anchorage area on the Netherlands
Continental Shelf, submitted.
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frequently to calculate migration rates, without using stochastic information on
the quality of the depth observations. Methods for the analysis of sea floor
dynamics are still in development, as a result of the recent improvements in
description of the stochastic character of surveyed depth values of the sea floor.
This stochastic character complicates the analysis of its evolution: even modern
survey techniques reveal depth with an uncertainty of a few decimeters at best
[Wells and Monahan, 2002], due to random errors in the measurement processes.

Frequent bathymetric surveys of shallow seas are necessary to produce reli-
able nautical charts. The analysis of past surveys aids the planning of resurvey
frequencies. Examples of survey plans are given by De Oliveira et al. [2007];
Dehling [2006]; Whatrup et al. [2005]; Dorst [2004]. Resurvey planning is best
served by a method that separates true sea floor deformation from measurement
uncertainties, and establishes whether a new survey confirms trends found in
previous surveys. The description of the uncertainty of surveyed depth values is
a subject of growing interest in the hydrographic community [e.g. Calder, 2006;
Dorst, 2004], since dealing with uncertainties is crucial to control the quality
of the survey process and to interpret bathymetric data. Therefore, we adopt
a method that (1) recognizes the stochastic character of surveys, (2) separates
static from dynamic behaviour, and (3) can distinguish between different kinds
of dynamics. Deformation analysis is such a method.

Deformation analysis applies statistical adjustment theory and testing theory
to a series of surveys of deformable objects. We apply the approach of De Heus
et al. [1994] to estimate sea dynamics. Details about the method are given in
Chapter 3. A comparison with the method of Wüst [2004] for bathymetric trend
analysis is given by Lindenbergh et al. [2007]. An overview of general literature
on deformation analysis is given by Chrzanowski [2006].

The anchorage area Maas West is located in the Southern North Sea, West of
the Port of Rotterdam, as shown in Figure 4.1. It has a relatively high resurvey
frequency of once per two years. This frequency is based on its location next
to an intensively used shipping lane, in combination with its rather shallow
depth of 15 to 25 m. To investigate whether the resurvey frequency could be
reduced, the available surveys, measured between 1994 and 2006, were analyzed
using deformation analysis. The results indicate sand wave migration. They
are compared to earlier results of sand wave migration in the Southern North
Sea, given by Knaapen [2005] and Van Dijk and Kleinhans [2005], and to the
process-based model of Sterlini et al. [2009].

4.2 The application of deformation analysis

4.2.1 Overview

In this Section, a brief introduction into the application of the method for
two spatial dimensions (analysis of a grid) is given. Similar applications are
possible for one (analysis of grid lines) and zero spatial dimensions (analysis of
grid nodes). For a description of the method in full detail, see Chapter 3, for
analysis in one spatial dimension.
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Figure 4.1: Anchorage area Maas West, located in the Southern North Sea in the
region West of Rotterdam. It consists of eighteen subareas A to R. The Maasvlakte
is the most seaward area of the Port of Rotterdam.

Input and Output

Deformation analysis is an application of statistical testing theory [e.g. Koch,
1999; De Heus et al., 1994] to analyze series of surveys. Application to the sea
floor requires depth values at the nodes of a grid, the uncertainty of each depth
value and the time of each survey. The size of the grid is limited to about
20 × 20 nodes, for computational reasons. The measurement and interpolation
uncertainty is described by an error model, giving variances σ(e)2 and covariance
functions c(e)(h) for the used surveys, only dependent on position difference h.
Distance h is the length of h.

The procedure allows us to select the significant morphological and morpho-
dynamic parameters for an area, and subsequently provide estimates for these
parameters, including confidence intervals. It results in a representation of the
measured sea floor that consists of the characterization by a limited number of
estimated parameters in a vector û, and the dispersion of the residual variations
from the characterization, which is described by the variances and covariances
of the parameters in a matrix Cu. The relations between the depth values and
the estimated parameters are linear or linearized. This allows us to follow a Best
Linear Unbiased Estimation (BLUE) for the estimation of the parameters of the
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step 1 or 2

select

characterization

E{d}=m
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dispersion

D{d}=Cd
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Figure 4.2: Flow diagram of our approach to deformation analysis, modeled after
[De Heus et al., 1994]. We first select the characterization and next compose the
dispersion. This diagram is a followed in the steps 1 and 2.

characterization, and for the estimation of their dispersion. The procedure is
illustrated in Figure 4.2.

Morphological characterization

Let us assume the input is available in a coordinate frame (x,y,z), in which the
three directions are perpendicular to each other, and depth d during survey s is
given as z = −dp,s at locations (xp,yp). The vector of all measured depth values
is denoted d, and their variances and mutual covariances are given in Cd. Defor-
mation analysis tests extensions to a set of morphological parameters, starting
with the simplest characterization possible, which is the single parameter bed
level d(b), assumed constant in space and time. Such an extension is accepted
if the so-called test quotient q of an extension is the largest over all available
extensions, and if this test quotient is larger than one. The characterization is
extended until the remaining test quotients are all smaller than one.

In step 1 of the procedure, spatial extensions are considered, and in step
2 temporal extensions. Step 0 prepares the input grids, and step 3 deals with
the adaptation of the survey plan based on the results. Also see Figure 4.3 for
the steps. This paper gives a methodical introduction to the two shaded steps,
and presents and discusses the results of these two steps. Step 0 is treated in
Chapter 2, and step 3 in Chapter 6.

The spatial extensions (step 1) to the initial parameter bed level d(b) are (i)
two bed slope parameters ψ(x) and ψ(y) in both the horizontal directions, and
(ii) two sand wave parameters: amplitude A and crest position ξ. Sand wave
patterns are assumed to be regular, such that a horizontal direction of the pat-
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Figure 4.3: Overview of the procedure to analyze a series of surveys. The method
described here consists of the two shaded steps.

tern variation can be identified as the x-direction of the grid, perpendicular to
the direction of along-crest uniformity, which is the y-direction of the grid. We
work with the relative sand wave parameters, with respect to their values Aref

and ξref for a reference survey: amplitude factor A′ = A/Aref and migration
ξ′ = ξ − ξref . To determine the dominant wavelength L(d) of the sand wave
extension, the test quotient becomes a function of wavelength: q = q(L). Con-
sequently, a wavelength search interval [Lmin,Lmax] needs to be defined, based
on an impression of the pattern. Subsequently, the best fitting wavelength is
obtained by maximizing q(L). If both spatial extensions are accepted, the mor-
phological characterization ms(x, y) of the sea floor during survey s becomes:

ms(x, y) = d(b)
s + ψ(x)

s x+ ψ(y)
s y −As cos(2π(x− ξs)/L

(d)). (4.1)

The estimated depth values of a characterization are given in a vector m.

The dynamic extensions (step 2) define a linear parameter trend in all sur-
veys, and outlying parameters for survey s, for each s = 1, · · · , S. For a param-
eter u, we consider the following extensions in time with respect to uref at time
tref :

1. a linear trend u̇ of the parameter in time:

u(t) = uref + u̇(ts − tref). (4.2)

2. outlying parameter ∆us for survey s:

u(t) =

{

uref (if t 6= ts)
uref + ∆us (if t = ts)

; (4.3)

Because the two parameters ψ(x) and ψ(y), and the two parameters A and ξ
are mutually correlated, an extension contains the two bed slope parameters,
or the two sand wave parameters. First, these two trend extensions are tested.
Depending on the values of the test quotients, the trend extensions are added to
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the characterization. After that the 2S outlier extensions are tested, to account
for nonlinear behaviour.

The levels of significance α specify the probability that an extension to a
representation is incorrectly selected. The criteria in Chapter 3 define values for
α, based on criteria for the selection of extensions for one-dimensional analyses
per grid line. Here, the levels of significance differ, as we set them for criteria for
a two-dimensional analyses of a full grid. The criteria are as in Chapter 3, except
for the grid used, which has a size of 1000 × 1000 m, and the allowed minimal

detectable biases are set at 0.1 m. (These are the values of the parameters that
are allowed to remain undetected with a specified probability.) This small value
illustrates that it is critical to detect dynamics at the scale of the full grid. The
resulting levels of significance are 5%, 7% and 5% for the spatial extensions,
the trend extensions and the outlier extensions, respectively. We also use these
levels of significance for zero-dimensional analysis.

Morphological residuals

In our procedure, the iterative addition of extensions continues until all remain-
ing extensions have a test quotient smaller than one. If the characterization
fits the series of surveys well enough, from a statistical point of view, the final
parameter values are calculated, as well as the associated uncertainties. The
overall test is used for this decision, with its overall test quotient q(o) smaller
than one to pass the test.

However, if the differences between the characterization and the measured
sea floor are larger than can be explained by the uncertainty of the depth mea-
surements, the characterization is insufficient. The differences are called the
residuals, which contain measurement errors and residual variations, like asym-
metries and bifurcations in the sand wave pattern, and small-scale rhythmic
features like mega-ripples. Instead of defining additional parameters, which
complicate the characterization, we assume that the residual variation is a ran-
dom function, and include additional morphological variance and covariance
components in the uncertainty, using Least Squares Variant Component Esti-
mation (LSVCE) [Teunissen and Amiri-Simkooei, 2008].

Final estimation

The LSVCE-procedure is followed for both the steps explained above. The vari-
ances and covariances, describing the dispersion, that are calculated in step 1
are used in step 2. An increased dispersion during step 1 therefore has conse-
quences in step 2. In the first place, it is less likely that an extension will be
accepted in that step. Also, it means that the resulting dynamic parameters will
be estimated less accurately. At the end of step 2, the second LSVCE procedure
only influences the uncertainty of the final parameter estimates.

We denote the additional variance and covariance for morphology (step 1)
σ(m)2 and c(m)(h), respectively. The additional variance and covariance for
temporal change (step 2) are denoted σ(t)2 and c(t)(h). The final variance and
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covariance, given in Cd, consists of the initial covariance matrix C
(e)
d and, if

the overall test of that step was rejected, of C
(m)
d and C

(t)
d . After the LSVCE-

procedure, the final estimates of a step are calculated using a Best Linear Un-
biased Estimation (BLUE) .

4.2.2 Bathymetric data

Five available surveys of the Maas West anchorage area, measured between
1994 and 2006, were used in a deformation analysis. The 2006 survey deployed
a Multi-Beam Echo Sounder (MBES), the other surveys a Single-Beam Echo
Sounder (SBES). Details on the surveys are given in Appendix 4.A.

The direction of the sand wave pattern, perpendicular to the crests, is ap-
proximately Northeast/Southwest for all subareas (Figure 4.4a). This direction
was determined using the DIGIPOL method [Van Munster et al., 1995; RIKZ,
1997; De Koning, 2007], which calculates variability values v(θ) for a series of
directions θ. The DIGIPOL-quotient between the maximum value of v for the
direction of highest variability θ(x) and the minimum value of v for the direc-
tion of lowest variability θ(y) determines the strength of the preference for that
direction. Figure 4.4b shows the spatial variation per subarea by its 95th per-
centile, around a fitted sloping plane. The Northwestern subareas seem to have
the largest pattern amplitudes. This Figure also shows the bed level of each
subarea, resulting from step 2.

The sea floor at the anchorage area has a rhythmic pattern of 200 to 400 m
length, which are the limits of the wavelength search interval for the detection
of sand waves. This is visible in the 20 m depth line of Figure 4.1. Shoreface-
connected ridges with a wavelength of several kilometres can be identified as
well, in an approximately perpendicular direction.

Since these larger patterns are not the focus of this study, we restrict the
size of the subareas to about a square kilometre. In this way, the dynamics on
these larger scales will be reflected by a change in detected bed level or bed
slope. A grid spacing of 50 m is sufficient to capture a sand wave pattern of
200 m length. This spacing allows for a grid size corresponding to the subarea
size on an ordinary computer, which gives us eighteen subareas, denoted A to
R (Figure 4.1).

4.2.3 Error modeling

The error e(x, y, t) at a position (xp, yp) and during survey s is denoted ep,s. It
is the sum of several error sources:

ep,s = e(v)
p,s + e(h)

p,s + e(k)
p,s. (4.4)

These sources are:

1. the combined influence of all processes involved in depth measurement

e
(v)
p,s;

2. the influence of position error e
(h)
p,s ;
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(a) DIGIPOL results
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(b) Bed level and variation
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Figure 4.4: Spatial characteristics of the December 1994 survey: (a) DIGIPOL di-
rections θ(x) and quotients max(v)/min(v) (quotients between 2.2 and 4.0, darker is
larger); (b) bed level d(b) (between 16 and 22 m, shown by the shade of the circles,

darker is deeper) and 95th percentiles of the spatial variation 1.96σ
(s)
d (between 0.95

and 2.6 m, shown by the size of the circles, larger is more variation).
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3. the potential influence of interpolation e
(k)
p,s, using e.g. Kriging.

The largest contribution to the error e
(v)
p,s of depth measurement in the Southern

North Sea outside the coastal zone is the water level reduction. It is common
practice to reduce depth measurements to a low water surface, nowadays Lowest
Astronomical Tide (LAT). The actual water level above this reduction surface
is determined as indicated in Appendix 4.A.

The position error e
(h)
p,s consists of two components. The first one is position

measurement, and the second one the binning error, for the assignment of depth
measurements to the center of the archiving bin in which they fall. Nowadays,
positioning is done by differential GPS, but for older surveys a system known
as Hyperfix was used, see Appendix 4.A. The slopes of the sea floor on the
BNLCS are so small that the effect of the binning error is negligible.

The interpolation error e
(k)
p,s is absent for MBES surveys, as they have over-

lapping swaths of depth measurements between tracks. Kriging [Chilès and
Delfiner, 1999; Isaaks and Srivastava, 1989] is used for the interpolation of SBES
surveys, quantifying the interpolation error as additional Kriging variance. On
the other hand, all SBES measurements are done in vertical direction, which
makes them more accurate than the MBES measurements that are done up to
wide angles with the vertical, introducing a variety of errors. The quantifica-
tion of the errors by variances σ(e)2 and covariance functions c(e)(h) is done in
Appendix 4.B.

4.3 Results of the deformation analysis

4.3.1 General results for the subareas

The procedure detects fifteen subareas that are regular enough to be charac-
terized using the sand wave extension. Two examples are given in Figure 4.5.
Details of all detected sand waves of step 1 are given in Figure 4.6. The am-
plitudes of the estimated sine functions are smaller than the spatial variations
(Figure 4.4), because of e.g. the asymmetry of the waves, or variations in the
crest direction. However, the larger amplitudes in the Northwest correlate with
the larger spatial variations in the Northwest. For all subareas, the overall test
of step 1 is rejected. Therefore, additional morphological variance is added to
the uncertainty of the depth data.

The results of step 2 are given in Figure 4.7 and Table 4.1. Sand wave
dynamics are found for eleven subareas. All those sand wave dynamics are linear
trends, and no outliers were found for those trends. The trends were detected
because of a constant migration rate, see Table 4.1. The average migration rate
is 4.2 m/yr. The growth of the amplitudes is not significant, as the estimates
are much smaller than the 95% confidence limits.

No migration was detected for four of the fifteen subareas with a sand wave,
because in those subareas the LSVCE procedure in step 1 has added too much
morphological variance to the uncertainty of the depth data. The consequence
of a larger uncertainty is a reduction of the test quotients q. For those four
subareas, the test quotients were reduced to a value below one.
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Figure 4.5: Depth values below Lowest Astronomical Tide and characterization for
subareas H and Q: (a) gridded depth values for subarea H; (b) characterization after
step 1 for subarea H; (c) gridded depth values for subarea Q; (d) characterization after
step 1 for subarea Q. All values are averages over the five surveys. Note that the scales
of the vertical axes differ from each other.

An overview of the pattern of all subareas where migration was found is
given in Figure 4.7, ordered from a small to a large migration rate. Some
of the wave crests are absent in subareas F and K, which would result in a
dominant wavelength that is larger than the upper boundary of the specified
search interval. In spite of that, another maximum q(L) was detected within
the interval. The disappearing crests cause the 1 km-scale pattern visible in the
20 m depth line of Figure 4.1. A further observation of Figure 4.6 is that the
wavelength seems to decrease with an increasing migration rate. This will be
studied in more detail in Section 4.4.1.

The uncertainty of the migration rate estimates depend on the added mor-
phological variance, and thereby on the regularity of the pattern. This is il-
lustrated by subarea H, which has both the most accurate migration rate and
the largest DIGIPOL-quotient (Figure 4.4). Subarea H also has a relatively
large amplitude (Figure 4.6), in spite of its relatively small spatial variation
(Figure 4.4). The depth values and characterization of subarea H are given in
Figure 4.5a. This subarea is studied in detail in Section 4.3.2.
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Figure 4.6: Results for the sand wave pattern: (a) step 1, detected dominant wave-
lengths L(d) (208 to 360 m, shown by shade of the circles, darker is larger wavelength)
and their fitted amplitudes A (0.1 to 0.5 m, shown by size of the circles, larger is larger
amplitudes); (b) step 2, migration (2.4 to 7.5 m/yr, darker is larger migration rate).
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Table 4.1: Linear trends for two-dimensional sand wave dynamics. The estimates
and uncertainties at a 95% confidence level are given as estimate ± uncertainty. A-F:
Northern; G-L: Central; M-R: Southern.

subarea growth rate Ȧ
′

migration rate ξ̇
′

A +1.6 ± 9.1 %/yr +3.7 ± 3.1 m/yr
B +0.1 ± 6.3 %/yr +3.6 ± 2.3 m/yr
C no sand wave trend detected
D −1.1 ± 8.1 %/yr +4.5 ± 3.1 m/yr
E no sand wave trend detected
F +1.5 ± 5.3 %/yr +3.1 ± 2.6 m/yr
G −1.3 ± 6.2 %/yr +4.7 ± 3.3 m/yr
H +0.3 ± 4.6 %/yr +2.4 ± 1.6 m/yr
I no sand wave pattern detected
J no sand wave pattern detected
K +3.5 ± 8.0 %/yr +3.1 ± 2.2 m/yr
L no sand wave trend detected
M +1.5 ± 7.3 %/yr +3.6 ± 2.9 m/yr
N no sand wave trend detected
O +0.8 ± 6.4 %/yr +5.1 ± 2.7 m/yr
P +2.3 ± 9.8 %/yr +5.6 ± 4.2 m/yr
Q +2.5 ± 6.5 %/yr +7.5 ± 1.9 m/yr
R no sand wave pattern detected

The Southeastern subareas migrate faster than average: the largest migra-
tion rate found is 7.5 m/yr, for subarea Q. This shallow subarea has a small
dominant wavelength and a small amplitude (Figures 4.4 and 4.6). The small
amplitude is a true reflection of the small spatial variation in depth (Figure 4.4),
and not caused by high irregularity of the pattern, as its DIGIPOL-quotient is
about average (Figure 4.4). The depth values and characterization of subarea
Q are given in Figure 4.5b.

The effect of migrating sand waves on depth is a decreasing depth at the side
of the wave crests to which they migrate, continuing until the crest has passed.
The associated danger of this decrease to shipping is shown in Figure 4.8, using
zero-dimensional analyses per grid node. For such an analysis, the only spatial
parameter involved is bed level. Often, linear trends are detected for those nodes
that are located on a Northeastern slope of a sand wave crest. These trends can
have a size of up to 0.5 m/yr upward for the anchorage area.

4.3.2 Detailed results for subarea H

The results of subarea H are the most accurate, and therefore described in more
detail. Figure 4.9 shows the resulting sand wave parameters of step 1 using
the white circles. Both a slope in the plane and a sand wave pattern were
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Figure 4.7: Depth values and migration rate for all subareas where migration is
detected, ordered from small migration rate estimates to large estimates.

detected, as the test quotients q for both these extensions are larger than one
(Figure 4.10). Therefore, five parameters per survey are used.

The planar results are static, and the sand wave results show the trend. The
black circles in Figure 4.9 show the sand wave results after step 2. The error
bars and the crosses indicate the 95% confidence intervals of the results of step
1 and step 2, respectively. In step 1, the five selected spatial parameters were
used to describe each survey individually, so there are 25 parameters. In step 2,
the results are described by seven parameters: three planar static parameters,
two sand wave parameters for the reference survey (the first), and two sand
wave trend parameters.
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Figure 4.8: Maximum upward linear trends in bed level ḋ
(b)

, detected by the zero-
dimensional analyses (darker is larger trend).

The differences between the planar estimates of step 1 are so small that the
initial static characterization is accepted. The crest positions of step 1 clearly
change linearly with time, which is recognized as migration during step 2. In
general, Figure 4.9a shows that the amplitude factors in step 2 are smaller than
the amplitude factors obtained in step 1. As there are fewer parameters, it is
harder to adapt the step 2 representation to the actual situation, causing the
sand wave pattern to fit less well. The worse fit becomes apparent by the smaller
amplitude of the pattern. It is clear that the confidence intervals of step 2 are
smaller than those of step 1. There are less parameters in step 2, while the
number of depth values at the input side stays the same. As the amount of data
per parameter increases, the results become more accurate.

The results of a zero-dimensional analysis confirms the observed migration
(Figure 4.11). At the side of the crests that lies in positive x-direction downward
trends are found, and at the side in negative x-direction, there are upward
trends. The largest upward trend is used to create Figure 4.8. Also, occasional
outliers are detected at the crests. These are the positions were an upward trend
is reversed into a downward trend. The outliers are needed here to account for
this nonlinear depth change. In the troughs, such an effect is not visible, because
they are less pronounced.



4.4. Discussion of results 115

a
m

p
lit

u
d

e
 f

a
c
to

r 
[−

]
(a)

1996 1998 2000 2002 2004 2006
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

time [year]

m
ig

ra
ti
o

n
 [

m
]

(b)

1996 1998 2000 2002 2004 2006
−20

−10

0

10

20

30

40

50

Figure 4.9: Sand wave results for subarea H, for a dominant wavelength L(d) of 231
m and a reference amplitude Aref of 0.38 m: (a) amplitude factor A′; (b) migration
ξ′. The white circles are the results after step 1, and the black circles indicate a linear
trend, detected in step 2. The variations that step 1 show are approximated by the
step 2 results, which are exactly on a sloping straight line. The sand wave trend of
step 2 is estimated as (a) a yearly growth rate Ȧ

′
for the amplitude factor of 0.003

(or 0.3%/yr), and (b) a migration rate ξ̇
′

of 2.4 m/yr. The vertical error bars and
the crosses indicate the 95% confidence intervals of the results of step 1 and step 2,
respectively.

4.4 Discussion of results

Correlation between migration of measured sand waves in the Southern North
Sea and other morphological parameters has been studied before. To validate
the results of our method, we make comparisons with two earlier papers on
observed sand wave migration in the Southern North Sea, and with an ideal-
ized process-based model. Knaapen [2005] finds a correlation between observed
migration rates and a predictor for migration rate, which is based on three pa-
rameters for sand wave shape, for migration rates up to 10 m/yr. Van Dijk
and Kleinhans [2005] report for sites closer to the shore that observed migration
rates up to 20 m/yr exist, depending on depth. These correlations are checked
against our analysis in Section 4.4.1. Idealized process-based models for tidal
sand wave dynamics confirm detected observed rates for the Southern North
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Figure 4.10: Test quotients q for step 1 of subarea H. The square at the vertical axis
represents the test quotient for the slopes, and the curve the test quotients for sand
waves as a function of wavelength. The circle represents the maximum test quotient,
which defines the dominant wavelength L(d) as 231 m.

Sea [Németh et al., 2007; Besio et al., 2008]. We compare our results with the
output of such a model in Section 4.4.2.

4.4.1 Correlations with spatial parameters

To test the depth dependency reported by Van Dijk and Kleinhans [2005], we use

the estimates and uncertainties for the migration rates ξ̇
′
in a linear regression

analysis with bed level d(b). This leads to:

ξ̇
′
= add

(b) + bd. (4.5)

Knaapen [2005] calculates a predictor ξ̇(p) for the migration rate in the direction
of the steep side as

ξ̇(p) = cL(d)2G2/H, (4.6)

with sand wave height H and dimensionless horizontal asymmetry (also lee-
stoss asymmetry and skewness) G. The value of the calibration constant c is
9.78·10−4 yr−1. Our results do not include sand wave height, but the related

spatial variation 1.96σ
(s)
d at a 95% confidence level is available. The spatial

variation is assumed to be half the wave height, H = 3.92σ
(s)
d .

Horizontal asymmetry is defined by Knaapen [2005] as (h−x −h+
x )/L(d) with

h−x the distance from crest to trough in negative direction of the x-axis and
h+

x the distance from crest to trough in its positive direction. Our results do
not include such a dimensionless parameter for horizontal asymmetry. How-
ever, differences from a sine shaped sand wave pattern are quantified in the
morphological variance σ(m)2, if a sand wave pattern is accepted during step 1.
These differences include horizontal asymmetries. Assuming that all subareas
have sand waves with equal vertical asymmetry (also crest-trough asymmetry
and peakedness) and equal crest length, we could use these variances to indicate
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m/yr, and the outliers ∆d(b)

s up to 1.8 m.

asymmetry. Taking the square root and dividing by the spatial variation makes

the morphological variance dimensionless, and we assume G = σ(m)/(1.96σ
(s)
d ).

These two assumptions give us the adapted predictor as:

ξ̇
(p)

= c(a)L(d)2σ(m)2/σ
(s)3
d . (4.7)

The calibration constant c(a) is adapted for the conversion factors 1/1.96 and
3.92 of G and H respectively. Its value is 6.49·10−5 yr−1. This new expression
enables us to calculate the linear correlation with the estimated migration rate:

ξ̇
′
= aξ ξ̇

(p)
+ bξ. (4.8)
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Figure 4.12: Estimates of linear correlations between migration rate ξ̇
′
and (a) bed

level d(b) and (b) migration predictor ξ̇
(p)

, based on the subareas for which migration
is detected. The dashed lines include all migrating subareas, and the dotted lines
exclude the subareas F and K.

The estimates for migration rate are plotted against bed level and the predictor
in Figure 4.12, including the 95% confidence intervals for migration rate. The
resulting linear correlations are also given in Figure 4.12 and Table 4.2. Table 4.2
gives the correlation coefficients as well. We assume the bed level estimates are
deterministic, because their 95% confidence limits are very small: 0.07 m, on
average. The correlation coefficients reveal a strong correlation with both bed
level and the predictor. As pointed out in Section 4.3.1, the sand wave patterns
of subareas F and K are in fact not showing a wavelength in the specified
range. We exclude the two subareas, and calculate the correlations again. The
results are again given in Figure 4.12 and Table 4.2. The correlations and their
coefficients hardly change, though.

The two papers and our results indicate that it is possible to predict mi-
gration rates based on morphological information of the sea floor. To see if
such a correlation even is apparent from a visual inspection of the shape of the
sea floor, we order the graphs of the measured depth values of each subarea
for which migration is detected, from small migration rate estimates to large
estimates (Figure 4.7). Most of the subareas show asymmetry, confirming the
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Table 4.2: Correlation estimates a, b and their uncertainties expressed as 95% confi-

dence limits, given as estimate ± uncertainty, for migration rate ξ̇
′
with bed level d(b)

and migration predictor ξ̇
(p)

. These estimates are used in equations 4.5 and 4.8. Also,
correlation coefficients ρ are given.

a b ρ

including subareas F and K:

d(b) −0.76± 0.40 yr−1 19.7 ± 8.2 m/yr −0.78

ξ̇
(p)

0.98 ± 0.56 1.3 ± 1.8 m/yr +0.72

excluding subareas F and K:

d(b) −0.76± 0.40 yr−1 20.1 ± 8.2 m/yr −0.84

ξ̇
(p)

1.01 ± 0.60 1.3 ± 2.0 m/yr +0.71

predictive power of sand wave asymmetry for migration. The relation between
migration rate on one hand and bed level, wavelength, and wave height on the
other hand is not clear from Figure 4.7.

4.4.2 Comparison with a sand wave model

In this Section, we will compare the estimated migration rates with rates found
using a process-based sand wave model. Using such an idealized process-based
model, Hulscher [1996] showed that the formation of tidal sand waves can be ex-
plained as an inherent instability of a horizontal, sandy seabed subject to tidal
flow. This linear stability analysis leads to a so-called fastest growing mode,
i.e. preferred values of the wavelength L(d) and the growth rate. Later on, the
physics of this model have been refined in various respects. For example, sand
wave migration can be explained quantitatively as resulting from the specifica-
tion of a residual current [Németh et al., 2002] or a higher harmonic to the tidal
forcing [Besio et al., 2004].

Recently, Van den Berg and Van Damme [2005] extended the above ap-
proach into the finite amplitude regime, leading to a nonlinear model capable
of describing tidal sand waves in morphodynamic equilibrium, see also Sterlini
et al. [2009]. First, the model identifies the fastest growing mode. Next, the
nonlinear evolution of this mode results in an equilibrium height, shape and
migration rate.

The nonlinear sand wave model considers a seabed topography that varies
in one horizontal dimension. The nonlinear shallow water equations describe
the 2DV tidal flow pattern over the bed. The bed shear stress then controls
the sediment transport, which is calculated with a simple power law including
bed slope effects. Turbulence is accounted for using a constant eddy viscosity
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in combination with a partial slip condition at the seabed. This condition reads

Av
duh

dz
= Suh, (4.9)

where Av is the vertical eddy viscosity, uh the flow velocity, and S the slip
parameter. For further details of the model setup, see Van den Berg and Van
Damme [2005] and Sterlini et al. [2009].

In the following, we will compare the migration rates obtained from our de-
formation analysis with output of the nonlinear sand wave model introduced
above. In our simulations, we consider a mean water depth of 20 m, a seabed
consisting of uniform sediment with a grain size of 250 µm, a constant vertical
eddy viscosity of 0.03 m2/s and a slip parameter of 0.01 m/s. The mean water
depth, depth-averaged flow velocity of the M2-tidal current, and grain size are
in agreement with observations, while the vertical eddy viscosity and slip pa-
rameter are chosen according to Németh et al. [2002]. Following Németh et al.
[2002], we introduce a residual current to induce sand wave migration. However,
due to the uncertainty in the choice of a value for the local residual current, we
consider three different values, which are realistic for the North Sea.

The three types of flow conditions are:

1. an M2-tidal current with a maximum depth-averaged flow velocity of 0.5
m/s;

2. an M2-tidal current with a maximum depth-averaged flow velocity of 0.5
m/s plus a residual current of 0.05 m/s;

3. an M2-tidal current with a maximum depth-averaged flow velocity of 0.5
m/s plus a residual current of 0.10 m/s.

The results are given in Table 4.3. The resulting values of the preferred
wavelengths are in fair agreement with the observed wavelengths. As expected
due to the symmetry in the type 1 flow conditions, there is no migration. The
migration rates obtained with type 2 and 3 flow conditions are in the same order
of magnitude as the results from the deformation analysis. This agreement is
promising. However, we feel that a quantitatively more detailed comparison is
not yet feasible, in view of the uncertainties in especially the model input.

4.5 Conclusion

The tidal sand waves in anchorage area Maas West show migration rates up
to 7.5 m/yr, which make depth values decrease at one side of the crests, and
thereby endanger navigation and anchoring. The migration rate is larger in
the shallower subareas in the Southeast, while it also depends on the shape of
the sand waves. This confirms the results of Van Dijk and Kleinhans [2005]
and Knaapen [2005], and is in fair agreement with the results from idealized
process-based models for tidal sand waves [Sterlini et al., 2009].
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Table 4.3: Results of the process-based model of Sterlini et al. [2009] for the three
types of flow conditions.

type currents uh: wavelength migration rate

M2 tidal; M0 residual L(d) ξ̇′

1 0.5 m/s; 0 m/s 300 m 0 m/yr
2 0.5 m/s; 0.05 m/s 270 m 2 m/yr
3 0.5 m/s; 0.10 m/s 270 m 6 m/yr

Deformation analysis allows us to estimate linear correlations between mor-
phology and migration rate, including the uncertainty of the estimates. This fa-
cilitates the comparison with observed migration rates in literature and process-
based models. To ensure safe navigation and anchorage in the approach to the
Port of Rotterdam, it is important to carefully set the resurvey frequency. The
estimation of the size of the sea floor dynamics of this area, and the uncertainty
of the estimates, is essential information thereto.

Appendices

4.A Overview of used surveys

All survey data used are given in WGS84 in combination with an UTM31-
projection. The data are reduced to Lowest Astronomical Tide. Only surveys
are used for which the data are available on the highest resolution, i.e. each 5 m
x 3 m archiving bin is filled, if possible. For SBES surveys the track distance is
50 m, and for the MBES survey a full coverage of the sea floor at the bin level
was achieved. All surveys are available in meters with two decimals, horizontally
and vertically. Gross errors were removed from the surveys as part of the quality
control procedure, after which each survey was approved by the commanding
officer and Hydrographic Office of the RNLN.

In Table 4.4, the survey details are presented. Selective Availability (SA)
is a deliberate degradation of the GPS signals. As differential GPS (DGPS)
is used, the impact of SA is not large. The differential reference station used
is either part of the IALA chain, or the VeriPos chain. The older surveys
use the terrestrial Hyperfix system, which gives the same order of positioning
uncertainty as DGPS with SA, i.e. in the order of 10 m. DGPS without SA
has an uncertainty of about 2.5 meters. The water level reduction method is
either based on measurements from pressure gauges placed on the sea floor for
the duration of the survey, or from permanent gauges in combination with the
PreMo prediction model.

The track direction is decided by the commanding officer of the survey vessel,
and can therefore vary between surveys. As a constant direction is not possible,
due to e.g. traffic, the track direction is estimated from the data up to the
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Table 4.4: Overview of surveys, including survey track direction East of North θ(st),
and used survey systems for depth, horizontal reference and vertical reference.

survey ID start of survey θ(st) survey systems
HY94067 December 1994 40o SBES, Hyperfix, pressure gauges
HY96067 May 1996 80o SBES, DGPS SA on, pressure gauges
HY00115 April 2000 30o SBES, DGPS SA off, PreMo
HY02144 January 2003 30o SBES, DGPS SA off, PreMo
HY06169 February 2006 75o MBES, DGPS SA off, PreMo

nearest five degrees. The first day of the month in which the survey started is
used as the survey moment.

4.B Quantification of measurement errors

Errors ep,s during survey s are described by variances σ
(e)2
p,s at each position

(xp, yp), and covariances c
(e)
p,q,s between the positions xp = (xp, yp) and xq =

(xq, yq). Covariance c
(e)
p,p,s equals variance σ

(e)2
p,s . The covariances between sur-

veys are assumed to be zero. The common 95% confidence interval has its limits

at 1.96σ
(e)
p,s.

4.B.1 Covariance function of the error

To describe the error covariances c
(e)
p,q,s, we assume second order stationarity,

which means that the covariances only depend on position difference h. An
exception to this assumption is the variance at h = 0. Following equation (4.4),

the covariance function c
(e)
s (h) of the measurement errors during survey s is:

c(e)s (h) = c(v)
s (h) + c(h)

s (h) + c(k)
s (h). (4.10)

The Kriging error is assumed not to be correlated (Chapter 2), which means

that its covariance function c
(k)
s (h) is zero for distances h > 0. The slopes of the

sea floor of shallow seas are such that we neglect the effect of the two types of
positioning errors, even in the presence of rhythmic patterns at various scales,

which means that c
(h)
s (h) equals zero for all distances h ≥ 0. The application

of LSVCE in step 1 will correct for this simplification, if necessary. The error
covariance function is therefore assumed to equal the error covariance function

c
(v)
s (h) of the depth measurements.

We assume the uncertainty of the water level reduction has a 95% confidence
limit of 0.2 m, corresponding to a variance of 0.01 m2. The water level values,
above the reduction surface, change relatively slowly, and are updated once every
ten minutes, which means that the reduction component of the error variance is
spatially correlated during the distance the ship travels in ten minutes, over the
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width of the track spacing of 50 m. With a ship speed of 8 knots, or 15 km/h,
the distance traveled is 2.5 km per ten minutes. From these surveying details, it
follows that the error covariance is represented best as an anisotropic Gaussian
function, with its highest covariance in the track direction, a maximum at the
origin of 0.01 m2, and its inflection points at 2500 m and 50 m in along-track
and across-track direction, respectively.

The variance appears as a discontinuity in this covariance function, at h = 0,

for which we do not assume second-order stationarity. Hence, the variance σ
(e)2
p,s

differs per depth value: the uncertainty of a depth measurement depends on
depth itself [International Hydrographic Organization, 2008a].

4.B.2 Variances of the SBES surveys

The variances of the used Single-Beam Echo Sounder (SBES) surveys of the
NZO-class survey vessels of the RNLN are modeled according to the components
of Dorst [2004]. The surveys of these vessels that are used in this study are listed
in Table 4.4. Assuming that all error sources follow Gaussian distributions, the
variances associated with the measurement errors for the SBES surveys are the
sum of all variances for the individual error sources listed in Table 4.5, i.e.:

σ(v)2
p,s =

10
∑

i=1

σ
(v)2
i,p,s = 1.4 · 10−6d 2

p,s + 0.0114. (4.11)

The influence of the error of the sound velocity profile measurements must be
derived from the relation of sound velocity with depth measurement, which is
dp,s = vt2d/2, with v the measured sound velocity and t2d the two-way travel

time. Consequently, the influence of the sound velocity profile error is σ
(v)2
2 =

σ2
v(t2d/2)2. Assuming an average sound velocity of 1500 m/s, the two-way travel

time is 2dp,s/1500 s, and the relation between depth variance and sound velocity

variance becomes σ
(v)2
2,p,s = σ2

vd
2
p,s/15002. The variance σ2

v of the sound velocity

profile error is 1 m2/s2, for the used sound velocity profiler. The variance σ2
v

is assumed constant, as sound velocity profiles are taken that often that their
degradation in time is neglected.

During a bathymetric survey, the survey ship is constantly performing mo-
tions, measured and corrected for by a motion sensor. Roll and pitch are the
rotations around the along-ship and across-ship axes, and heave is the high-
frequent change in vertical ship position with respect to the water level. As
surveying is only done during low sea states and the beam-width of an SBES
is relatively wide, roll and pitch errors are neglected. Heave measurement on
board the NZO-class vessels has a standard deviation of a tenth of the heave
amplitude. As heave data is usually not available in the bathymetric archives,
and because of the sea state limitation, this error in the heave correction is also
neglected. It is also assumed that there is a clearly identifiable depth of the
sea floor, which means the idealization error is zero. If identification of the bed
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Table 4.5: Sources of error for depth measurements dp,s and their variance σ
(v)2
p,s for

NZO-type vessels. Depth-dependent variances are given, as well as variances for two
values of dp,s. The total propagated error variance σ

(v)2
p,s and its 95% confidence limit

1.96σ
(v)
p,s are also given.

i error source [m2] σ
(v)2
i,p,s σ

(v)2
i,p,s σ

(v)2
i,p,s

(15 m) (25 m)
1 echo sounder 1·10−6d 2

p,s+6·10−4 8·10−4 1.2·10−3

2 sound velocity profiler 4·10−7d 2
p,s 1·10−4 3·10−4

3 degradation of profile 0 0 0
4 static draught measurement 6·10−4 6·10−4 6·10−4

5 dynamic draught model 2·10−4 2·10−4 2·10−4

6 water level reduction 0.01 0.01 0.01
7 heave sensor 0 0 0
8 roll sensor 0 0 0
9 pitch sensor 0 0 0
10 sea floor idealization 0 0 0

σ
(v)2
p,s [m2] 0.0117 0.0123

1.96σ
(v)
p,s [m] 0.21 0.22

level would be problematic, e.g. in the presence of a mud layer, the idealization
error should be taken into account.

The total error variance follows from the addition of the Kriging variance to
the measurement error variance:

σ(e)2
p,s = 1.4 · 10−6d2

p,s + 0.0114 + σ(k)2
p,s . (4.12)

In hydrography, it is common to select the shallowest depth per bin. This
operation skews the distribution function of the measurement errors, creating
a bias in the shallow direction. Although we are aware of this effect, it is
impossible to quantify, unless the original bathymetric data would still have
been available. As they are not, we ignore this effect, and do not increase the
variance for this. Variances that are modeled too small result in erroneous
acceptance of extensions, during the deformation analysis, which is regarded
less severe than the opposite erroneous missed dynamics, caused by variances
that are modeled too large.

4.B.3 Variances of the MBES survey

The MBES-equipped HOV-class survey vessels of the RNLN have replaced the
NZO-class vessels. The MBES survey used in this study fully covers the sea
floor, allowing us to assign a depth value to each grid node, without applying
an interpolation procedure. The error model of the HOV-class vessels is imple-
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mented in the survey software, but is not yet used because the results still show
erroneous behaviour. MBES error modeling was first done by Hare [1995].

Instead, the MBES survey uses the S44 order 1 standard for the surveyed
depth values [International Hydrographic Organization, 2008a]. MBES uncer-
tainty strongly depends on the transmit and receive angle of the beam, hence
swath-width is usually limited by the expected depth uncertainty in relation to
the maximum allowed uncertainty [Hare, 1995]. Therefore, we assume that each
depth measurement is at least as accurate as specified by S44. Order 1 specifies
depth accuracy at the 95% level as:

1.96σ(v)
p,s =

√

a2 + (bdp,s)2, (4.13)

with depth dp,s, and parameters a and b, which are 0.5 m and 0.013 respectively
for order 1. For 15 m and 25 m depth, the variances for S44, Order 1 are 0.075
m2 and 0.093 m2 respectively, and the corresponding 95% confidence limits
are 0.54 m and 0.60 m. A comparison with table 4.5 shows that the MBES
variance could be almost an order of magnitude more inaccurate than the NZO
SBES variance, as the widest MBES beams travel a long distance through the
water and are prone to diffraction. In the absence of an interpolation error, and
neglecting the positioning error, the MBES error variance is:

σ(e)2
p,s = (a2 + (bdp,s)

2)/1.962. (4.14)

For SBES measurements, the interpolation error usually dominates. Therefore,
MBES grid nodes are often more accurate than SBES grid nodes, in spite of the
larger measurement uncertainty.
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Chapter 5

Spatial variations in sea floor dynamics

for the Southern North Sea

Abstract

The optimization of the resurvey policy of the Netherlands Hydrographic Service re-

quires insight into sea floor dynamics in the Southern North Sea. To study the spatial

variations in sea floor dynamics, the bathymetric archives of the Netherlands Hydro-

graphic Service are analyzed using deformation analysis. We focus on several sand

wave areas and a single flat area. In some of those areas, dredging takes place, to

guarantee a minimum depth. The results indicate sand wave migration in areas close

to the coast, and bed level changes of the order of decimeters over the past two decades.

The dominant wavelength of the sand waves varies. We compare our results to earlier

studies of the same sand wave areas, in which we find similar migration rates, but

different wavelengths.

5.1 Introduction

The sea floor of the Southern North Sea on the Belgian Continental Shelf and
the Southern part of the Netherlands Continental Shelf is covered with intricate
rhythmic bed form patterns. Bed form patterns, induced by the interaction of
tidal flows and sandy sediments and with a wavelength of about 100 to 1000 m,
are called tidal sand waves. The presence and dynamics of tidal sand waves can
have a significant impact on the navigation depth, with migration rates that
depend on the tidal flow conditions. Idealized process-based models for tidal
sand wave behaviour make an important contribution to the understanding of
these dynamics [Besio et al., 2008; Németh et al., 2007].

In the Southern North Sea, the influence of sand wave dynamics on depth
has recently been studied by e.g. Van Dijk et al. [2008], Knaapen [2005] and
Wüst [2005], for areas that are intensively used for navigation. An overview
of the sand wave characteristics, as found by Van Dijk et al. [2008], Knaapen
[2005] and Knaapen et al. [2001], is given in Table 5.1. In these studies, advan-
tage is taken of the modern surveys using multi-beam echo sounders (MBES),
which provide high-resolution depth data. The high spatial resolution requires
highly automated procedures. In contrast, older analyses that use single-beam
echo sounders (SBES) choose an interpretation based on visual evaluation of
depth values, see e.g. Wright [1992]; Kember [1984]; Langhorne [1982a]; Ter-
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Table 5.1: Dominant wavelengths L(d) and migration rates ξ̇′ on the Belgian and
Netherlands Continental Shelf for the regions Selected Track and Noordhinder, as
found in literature. The wavelengths found by Knaapen [2005] are rounded to the
nearest 10 m. The areas are shown in Figure 5.2.

location L(d) [m] ξ̇′ [m/yr] reference
Noordhinder region 550 - Knaapen et al. [2001]
Twin area 160 −0.6 Knaapen [2005]
Noordhinder Junction:

subarea 1 250 −0.2 Knaapen [2005]
subarea 2 220 −0.2 Knaapen [2005]

Short Stay anchorage area 240 0.1 Knaapen [2005]
Eurogeul Approach:

subarea 1 230 0.2 Knaapen [2005]
subarea 2 240 0.3 Knaapen [2005]

Eurogeul Approach 160 0.4 Van Dijk et al. [2008]

windt [1971]. Most of the studies on sand wave dynamics in the North Sea
indicate sand wave migration. Such information helps the resurvey planning of
bathymetric surveys by the Netherlands Hydrographic Service, used for nauti-
cal charting. This is crucial for the safe navigation through one of the busiest
shallow seas in the world.

The study of spatial variations in sea floor dynamics from surveys, at the
scale of the full Belgian and Netherlands Continental Shelf (BNLCS), is com-
plicated by the absence of series of surveys for the largest part of the BNLCS.
However, series of surveys have become available for several areas over the past
decade. In this study, we present the results of the deformation analysis (Chap-
ter 3) performed on several areas on the BNLCS, and we compare them with
the results from existing methods.

Our study answers a methodical question, on the performance of deformation
analysis for areas with a rather complicated morphology, and a morphological

question, on the role of sand wave patterns in sea floor dynamics. The answers to
the methodical question help us to explain differences with the existing results.
To answer the morphological question, we try to find correlations between sand
wave migration and other morphological parameters.

In order to apply the method of deformation analysis, a two-dimensional
approach is chosen, for which areas are split up into smaller subareas of equal
size. Such an approach results in a limited number of morphological param-
eter estimates, allowing for the most insightful description of a full area. For
each subarea, we define a grid. Results of one-dimensional analyses of each
individual grid line in the direction perpendicular to the sand wave crests, and
zero-dimensional analyses per individual grid node potentially differ from these
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two-dimensional results. If this is the case, these additional results are given as
well.

The presented areas have been selected because of the availability of at
least three surveys. The spatial extent of a subarea is subject to the following
constraints. It must be small enough to assume uniform morphology, and large
enough to cover at least a full wavelength of a sand wave. The grid spacing
depends on the presence of sand waves, which limits the maximum extent for
computational reasons. Details on deformation analysis and its settings are
given in Section 5.2.

We consider four regions, shown in Figure 5.1 and Table 5.2:

1. the Selected Track region for vessels with a deep draught, between the
English Channel and the Noordhinder Junction (Section 5.3);

2. the Noordhinder region, West of the Port of Rotterdam (Section 5.4);

3. the region West of the Port of IJmuiden (Section 5.5);

4. the region North of Terschelling (Section 5.6);

A fifth region West of Rotterdam was analyzed in Chapter 4, also using defor-
mation analysis. Both the regions Noordhinder and West of IJmuiden have a
guaranteed depth, which requires human intervention in the natural morpholog-
ical system by repetitive dredging. All regions show sand wave patterns, except
for the region North of Terschelling. The areas of each region are listed in Ta-
ble 5.2. The areas in the regions Selected Track and Noordhinder are also shown
in Figure 5.2. The results are used to discuss the morphological question and
the methodical question in Section 5.7. Conclusions on the variation between
the detected dynamics of those areas are drawn in Section 5.8.

5.2 Deformation analysis

5.2.1 Overview

Input and Output

Deformation analysis is an application of statistical testing theory [e.g. Koch,
1999] to analyze series of bathymetric surveys s = 1, · · · , S. In order to ap-
ply deformation analysis to the sea floor, we use depth values at the nodes
p = 1, · · · , P of a grid, the uncertainty of each depth value and the time of each
survey. The size of the grid is limited to about 20 × 20 nodes, for computational
reasons. The uncertainty is described by an error model, giving variances and
covariance functions for the used surveys, see Chapter 4 for the Royal Nether-
lands Navy (RNLN) SBES surveys. Further, it is assumed that the performance
of the Rijkswaterstaat (RWS) and RNLN MBES survey suites is according to
order 1 of the S44 standard [International Hydrographic Organization, 2008a].

The procedure allows us to select N significant morphological and morpho-
dynamic parameters for an area, based on M depth values, where M = PS.
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Figure 5.1: Overview of analyzed regions in the Southern North Sea, on the Belgian
and Netherlands Continental Shelf. The region West of Rotterdam is analyzed in
Chapter 4.

Subsequently, deformation analysis is able to provide estimates for these pa-
rameters, including confidence intervals. This results in a representation of the
measured sea floor that consists of the characterization by a limited number of
parameters, and the dispersion of the residual variations from the characteri-
zation, which is described by the variances and covariances of the parameters.
The relations between the depth values and the estimated parameters are lin-
ear or linearized. This allows us to follow a Best Linear Unbiased Estimation
(BLUE) for the estimation of the parameters of the characterization, and for
the estimation of their dispersion. More details are given in Chapter 3.

Morphological characterization

Let us assume the input is available in a three-dimensional coordinate frame
(x,y,z), in which the three directions are perpendicular to each other, and depth
d is given as z = −d at horizontal locations (x,y). Deformation analysis sub-
sequently tests extensions of the set of morphological parameters, starting with
the simplest sea floor characterization possible, which is the single parameter
bed level d(b), assumed constant in space and time. Then, spatial or temporal
extensions to this set are made. Such an extension is accepted if its so-called
test quotient q is the largest over all available extensions, and if this test quo-
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Figure 5.2: Overview of analyzed areas on the Belgian and Netherlands Continental
Shelf in the Selected Track region without guaranteed depth, and the Noordhinder
region with guaranteed depth.

tient is larger than one. The characterization is extended until the remaining
test quotients are all smaller than one.

Spatial extensions (step 1) to the initial parameter bed level d(b) are two bed
slope parameters ψ(x) and ψ(y) in both the horizontal directions, and two sand
wave parameters: amplitude A and crest position ξ. Sand wave patterns are
assumed to be regular, such that a horizontal direction of the pattern variation
can be identified as the x-direction of the grid, perpendicular to the direction of
along-crest uniformity, which is the y-direction of the grid. We usually work with
the relative sand wave parameters, with respect to their values Aref and ξref for
a reference survey: amplitude factor A′ = A/Aref and migration ξ′ = ξ − ξref .
To determine the dominant wavelength L(d) of the sand wave extension, the
test quotient becomes a function of wavelength: q = q(L). Consequently, a
wavelength search interval [Lmin,Lmax] needs to be defined. Subsequently, the
best fitting wavelength is obtained by maximizing q(L).

The dynamic extensions (step 2) define a linear parameter trend in all sur-
veys (denoted e.g. ḋ(b) for bed level), and outlying parameters for survey s, for

each s = 1, · · · , S (denoted e.g. ∆d
(b)
s for bed level). Because the two parame-

ters ψ(x) and ψ(y), and the two parameters A and ξ are mutually correlated, an
extension contains the two bed slope parameters, or the two sand wave param-
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Table 5.2: Areas per region and number of subareas per area, including the area
codes used in the Table 5.3.

region areas (area code) # subareas
Selected Track Critical area A,

including Twin (ST1); 25
Critical areas B,

E, F, G, H, I, J (ST2); 20
Critical areas C, D, K (ST3); 11
Long Stay anchorage (ST4) 32

Noordhinder Noordhinder Junction (NH1); 72
Short Stay anchorage (NH2); 24
Eurogeul Approach (NH3) 92

West of Rotterdam Maas West anchorage (WR1) 18
West of IJmuiden IJgeul Approach (WIJ1); 108

IJgeul Approach anchorage (WIJ2) 12
North of Terschelling shallow part of TE-TSS (NT1) 14

eters. First, these two trend extensions are tested. Depending on the values of
the test quotients, the trend extensions are added to the characterization. After
that the 2S outlier extensions are tested, to account for nonlinear behaviour or
systematic errors in a survey.

The levels of significance α specify the probability that an extension to a
representation is incorrectly selected. We use the values for α that were set in
Chapter 4, which are 5%, 7% and 5% for the spatial extensions, the trend exten-
sions and the outlier extensions, respectively. Deformation analysis is possible
using three different numbers of dimensions: a zero-dimensional analysis per
grid node, a one-dimensional analysis per grid line in the direction of highest
variability, and a two-dimensional analysis of a full grid. The specified levels of
significance are adopted for all three these numbers of dimensions.

Morphological residuals

The iterative acceptance of extensions continues until all remaining extensions
have a test quotient smaller than one. If the characterization fits the series of
surveys well enough, from a statistical point of view, the final parameter values
are calculated, as well as the associated uncertainties. The overall test is used
for this decision, with its overall test quotient q(o) smaller than one to pass the
test.

However, if the differences between the characterization and the measured
sea floor are larger than can be explained by the uncertainty of the depth mea-
surements, the characterization is insufficient. The differences are called the
residuals, which contain measurement errors and residual variations, like asym-
metries and bifurcations in the sand wave pattern, and small-scale rhythmic
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features like mega-ripples. Instead of defining additional parameters, which
would complicate the characterization, we assume that the residual variation is
a random function, and we include additional morphological variance and covari-
ance components in the uncertainty, using Least Squares Variant Component
Estimation (LSVCE) [Teunissen and Amiri-Simkooei, 2008].

The LSVCE-procedure is followed for both the steps explained above. The
variances and covariances, describing the dispersion, that are calculated in step
1 are used in step 2. An increased dispersion during step 1 therefore has con-
sequences in step 2. In the first place, it is less likely that an extension will be
accepted in that step. Also, it means that the resulting dynamic parameters will
be estimated less accurately. At the end of step 2, the second LSVCE procedure
only influences the uncertainty of the final parameter estimates.

5.2.2 Wavelength

The areas analyzed using deformation analysis are listed in Table 5.3. To deter-
mine the dominant wavelength L(d) of the sand waves, it is necessary to define
search intervals [Lmin,Lmax]. The minimum wavelengths Lmin are chosen by
visual inspection of the crest distances, and we define Lmax = 2Lmin, wherever
possible. This excludes additional maxima in the test quotient function at mul-
tiples of the dominant wavelength. The results in literature (Table 5.1), which
are not consistent with each other, are contained in our search intervals, except
for the wavelengths of Van Dijk et al. [2008]. The differences are due to the
high complexity of the sand wave pattern in the Noordhinder region.

Table 5.1 shows that wavelengths of the order of both 250 m and 550 m were
found for the three connected areas Noordhinder Junction, Approach Eurogeul
and Short Stay anchorage. The simultaneous presence of these two patterns
forces us to choose a larger wavelength search interval. This is also necessary
for the IJgeul Approach area.

For the Critical areas, either the smaller or the larger wavelength seems to
dominate an area. The Southern areas usually show a small dominant wave-
length, and the Northern areas a large dominant wavelength. For Critical area
A, which includes the Twin area, an even smaller wavelength is present.

By definition, the x-direction of the grids coincides with the direction of
highest variability θ(x) after correcting for the slope of a subarea, according to
the DIGIPOL-method [Van Munster et al., 1995; RIKZ, 1997; De Koning, 2007].
This direction is obtained by maximising the DIGIPOL variability function v(θ),
for which the quotient max(v)/min(v) quantifies the strength of the direction.
The grid spacing h(g) is set according to the last column in Table 5.3. In subareas
where a sand wave may be present, the grid spacing must be smaller than half
the wavelength, to prevent aliasing effects. For these areas, a grid spacing of
50 m is chosen. The shallowest part of the Traffic Separation System North of
Terschelling (TE-TSS) does not show any rhythmic patterns, thereby allowing
for larger grid spacings, and consequently larger subareas are analyzed at once.



134 Chapter 5. Spatial variations in sea floor dynamics

Table 5.3: Search intervals [Lmin, Lmax] for wavelength L(d), and grid spacing h(g)

used for the analyzed areas. The area codes have been introduced in Table 5.2.

area code Lmin [m] Lmax [m] h(g) [m]
ST1 150 300 50
ST2 450 900 50
ST3 200 400 50
ST4 200 900 50
NH1-4 200 900 50
WR1 200 400 50
WIJ1-2 200 900 50
NT1 - - 125

5.3 The Selected Track region: little dynamics

Results for all Critical areas were presented before by Dorst et al. [2007]. The
results presented here differ, because of changes made to the application of defor-
mation analysis, and because of the usage of additional surveys. The application
of deformation analysis now includes an LSVCE procedure, which prevents the
misinterpretation of small scale dynamics as dynamics at the scale of a subarea.

5.3.1 Spatial characterization

The available number of surveys for the Critical areas and the Long Stay an-
chorage area are shown in Figure 5.3, for each subarea. All surveys are listed
in Appendix 5.A. There are many surveys available for the Twin area, which
we split up, for computational reasons, into three analysis periods: 1991 to
1999, 2000 to 2002, and 2003 to 2006. This abundance of data is caused by
a shared surveying effort of Rijkswaterstaat (RWS) and the Royal Netherlands
Navy (RNLN). The RNLN surveys the Twin area as part of Critical area A.
Figure 5.3 also shows the characterization of the sea floor by step 1 of the defor-
mation analysis procedure. Each subarea is characterized as one of the following
types: a horizontal plane, a sloping plane, a horizontal plane with a sand wave
pattern, or a sloping plane with a sand wave pattern. It turns out that most
of the subareas are characterized by the deformation analysis as both showing
slopes and a sand wave. For those subareas in which no sand wave pattern is
detected, the pattern is in fact too irregular: it differs too much from a sine
shaped wave in a single direction.

Twin area

Most subareas of the Twin area show the same characterization for all three
analysis periods. An exception is the subarea indicated by the arrow in Fig-
ures 5.3c-e, which is characterized as horizontal first (1991-1999), then as sloping
with a sand wave pattern (2000-2002), and finally as sloping without a sand wave
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(a) Critical areas, except Twin area
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Figure 5.3: The analyzed number of surveys and the characterizations for (a) the
Critical areas except for the Twin area, (b) the Long Stay anchorage area, and (c)-(e)
the Twin area. The subarea indicated by the arrow in the Figures (c)-(e) is shown in
detail in Figure 5.4. Most of the subareas are characterized by both a spatial extension
for slope, and a spatial extension for a sand wave pattern, visible as the presence of
both a circle and a square around the number.
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pattern (2003-2006). This exceptional subarea is shown in Figure 5.4a, which
shows bifurcating crests. The bifurcation increases the dominant wavelength to
the maximum value of the search interval, as visible in Figure 5.4b. The test
quotients q(L), as a function of wavelength L, for the 2000-2002 period has its

maximum just within the search interval, at L(d)=296 m. For the other two
analysis periods, the test quotient has its maximum value outside the search
interval; in that case no sand wave pattern is accepted.

The test quotients q(L) are larger for analysis periods that have relatively
more MBES surveys. The three analysis periods contain zero, two, and four
MBES surveys respectively. MBES surveys have, on average, more accurate
gridded depth values. Therefore, it is easier to detect slopes and sand wave
patterns. This effect is visible for the test quotients plotted in Figure 5.4b.
The test quotients for the slopes are 0.23, 1.23, and 3.33 for the three periods,
respectively.

Regularity

The orientations of the sand wave pattern , calculated as the DIGIPOL-direction
of highest variability θ(x), are shown in Figure 5.5. The directions are based
on the May 2000 SBES survey of the Selected Track. Applying the DIGIPOL-
procedure to a data set for which the data resolution strongly depends on di-
rection, like SBES surveys, results in a bias toward the direction of highest
resolution. The DIGIPOL-procedure is computationally too expensive to be
applied to a MBES survey. Fortunately, the survey ship commander usually
plans the SBES survey tracks roughly in the direction of the sand wave pattern,
to prevent the missing of crests in the data.

The May 2000 survey was sailed in the directions 36◦ and 216◦. Figure 5.5
shows that the resulting DIGIPOL directions show differences of up to 30◦ with
respect to the track direction. Figure 5.5 also shows that the Southern subareas
have a more clearly defined direction of highest variability than the Northern
subareas, as the DIGIPOL-quotients are larger in the South. This indicates
that the sand waves are less regular in the Northern subareas.

The decrease in regularity toward the North is also seen in Figure 5.6, as
indicated by the cross symbols for sand wave absence. Other potential causes
for the rejection of the sand wave extension are the limited pattern amplitude,
or the boundaries of the wavelength search interval (as we saw in Figure 5.4).
As we have defined the wavelength search interval differently for Critical area
A, the other Southern areas, and the Northern areas (see Table 5.3), the wave-
lengths clearly differ. The largest amplitudes of the areas with a sand wave
characterization are found for the Northern Critical areas, where we also found
larger wavelengths. The patterns for the Long Stay anchorage area are more
complicated, which reduces the detected sand wave amplitude.
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Figure 5.4: Characterization of the exceptional subarea of the Twin area: (a) gridded
depth values, showing a bifurcation; (b) test quotients q(L), for the three analysis
periods. The maximum test quotient is found for the wavelength at the maximum of
the search interval, because of the bifurcation.



138 Chapter 5. Spatial variations in sea floor dynamics

(a) Critical areas, except Twin area

   2
o
E 

 30’ 
   3

o
E 

 30’ 

 40’ 

  52
o
N 

The Netherlands

BelgiumFrance

United Kingdom

(b) Long stay anchorage area

   2
o
E 

 36.00’ 

 54’   52
o
N 

  9’ 
(c) Twin area

   2
o
E 

 18.00’ 

 30’ 

  51
o
N 

 36.00’ 

 42’ 

Figure 5.5: DIGIPOL directions θ(x) and quotients max(v)/min(v) (1.4 to 3.7, darker
is larger) for (a) the Critical areas except for the Twin area, (b) the Long Stay an-
chorage area, and (c) the Twin area.

5.3.2 Temporal characterization

The two-dimensional deformation analyses in the Twin area do not reveal any
migration of the sand wave patterns. However, Knaapen [2005] found small mi-
gration rates using an alternative method, see Table 5.1. To estimate migration
rates, Knaapen [2005] removed systematic positioning errors from the data, and
identified crest and trough positions. According to our results using deforma-
tion analysis, these rather small migration rates are not present, and therefore
qualified as artifacts, caused by remaining horizontal measurement inaccuracies,
identification inaccuracies of the crests and troughs, or local shifts of a single
crest or trough. If these migration rates are real, our representation of a sand
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Figure 5.6: Dominant wavelengths L(d) (165 to 886 m, shown by shade of the circles,
darker is larger wavelength) and amplitudes A (0.1 to 4.2 m, shown by size of the
circles, larger is a larger wavelength) for (a) the Critical areas except for the Twin
area, (b) the Long Stay anchorage area, and (c)-(e) the Twin area. A cross symbol
denotes a subarea where the sand wave pattern is too irregular, the amplitude is too
small to detect the pattern, or the dominant wavelength is outside the specified search
interval.
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wave pattern by a sine function does probably not detect these values in such
a complicated sand wave field. Our results for bed level dynamics are given in
Figure 5.7. Downward trends were found for the first analysis period of the four
most Southwestern subareas of the Twin area, see Figure 5.7c.

Twin area

There could also be small trends in the parameters of the Twin area that are not
detectable in the separate analyses of any of the three analysis periods, but that
are detectable over the full time span of available surveys. However, analyzing
this full time span is computationally far too expensive. To circumvent this
problem, we follow two approaches. The first approach is to take every third
available survey only. It turns out that this does not result in the detection
of dynamics for any subarea that was classified as static for the three original
analysis periods. An outlying bed level d(b) was found for the first survey, for
two subareas out of the four subareas that showed a downward trend for the
first analysis period. These are the Northern and the Western subarea. This
confirms the detection of the downward trend for the first analysis period for
these subareas: the initial downward trend did not continue long enough to be
detected by the trend test of the full time span, but the first survey was too
shallow to be considered part of a static bed level.

The second approach is to apply deformation analysis to the three resulting
sets of parameters only, rather than the bathymetric data set. A static represen-
tation for a parameter over the full time span of the surveys is defined as a null
hypothesis, and a representation that includes a linear trend for that parameter
as an extension, or alternative hypothesis. The data are the parameter values
for the three analysis periods, including their variances. In the case of a trend
in an analysis period, the parameter used is the reference parameter uref .

This approach fails for the sand wave parameters, as the wavelength is not
assumed constant over the separate analysis periods. For the bed level parame-
ter d(b), this results in the detection of long term downward trends for the four
subareas for which a downward trend was already found during the first analysis
period. Also, an additional long term trend was found for one more subarea.
These subareas are marked by a plus sign in Figure 5.7. The detected long term
trends have a maximum of 0.03 m/yr, with a 95% confidence interval of 0.01
m/yr.

The differences between the original approach that uses three analysis peri-
ods for the Twin area, and the two alternative approaches described above are
small. We conclude that the choices for the specific analysis period for deforma-
tion analysis does not make a big difference, and use the results of the original
approach with three analysis periods.

Grid line analyses

The one-dimensional results per grid line show some exceptional dynamics that
are hardly larger than their uncertainty at a 95% confidence interval, see Ta-
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Figure 5.7: Dynamics of Bed level d(b) for (a) the Critical areas except for the Twin
area, (b) the Long Stay anchorage area, and (c)-(e) the Twin area. (The values of
the detected downward trends for the analysis period 1991-1999 of the Twin area are
between 0.04 and 0.05 m/yr, with an uncertainty at a 95% confidence interval of 0.01
to 0.03 m/yr. The values of the detected long-term downward trends of the Twin area
are between 0.01 and 0.03 m/yr, with an uncertainty at a 95% confidence interval of
0.01 m/yr.)
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Table 5.4: Grid line dynamics for the Selected Track region. For this region, 88
analyses were done with approximately 20 grid lines per subarea. All results were
static, except for the ones listed here. The uncertainty is expressed at a 95% confidence
interval.

type of dynamics location, maximum
(number of grid lines) analysis period estimate uncertainty
linear downward trend (9) Twin, 1991-1999 0.005 m/yr 0.005 m/yr
shallower outlier (1) Twin, 1991-1999 0.4 m 0.4 m
shallower outlier (1) Critical area J 0.6 m 0.3 m
smaller amplitude outlier (1) Twin, 1991-1999 −40% 50%
positive position outlier (1) Twin, 1991-1999 18 m 19 m

ble 5.4 for the details. These dynamics may be artifacts of the method. For
instance, the crest position outlier for the sand wave may be caused by the
less accurate positioning equipment used during the May 1995 survey. Only
the nine detected downward trends are realistic, because they confirm the two-
dimensional grid analyses of the Southwestern subareas of the Twin area be-
tween 1991 and 1999, shown in Figure 5.7.

For most of the subareas, the static results of the two-dimensional analyses
are confirmed by static results of the one-dimensional analyses. We conclude
that the choices for the dimensions of deformation analysis do not make a sig-
nificant difference.

5.4 The Noordhinder region:

comparison with other methods

The areas studied in this Section are the Eurogeul Approach channel, the Short
Stay anchorage area, and the Noordhinder Junction (Figure 5.2), based on the
surveys listed in Appendix 5.A. These three areas are among the most critical on
the BNLCS, because of the combination of a high shipping intensity, small depth
values, and a dynamic sea floor. The areas are surveyed by Rijkswaterstaat
several times a year, and the depth is maintained by dredging, which took place
in 1991, 1996, 2002, and 2004. During those dredging operations, the sediment
was removed from the area, except for 2002, when the sediment taken from the
crests was placed in the troughs [Stolk, personal communication]. The sea floor
dynamics of these areas have been studied before, using alternative methods
[Van Dijk et al., 2008; Knaapen, 2005; Wüst, 2005]. We present our results in
Section 5.4.1 and 5.4.2, and compare our results from the deformation analyses
with the results in literature in Section 5.4.3.
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5.4.1 Spatial characterization

The sand wave patterns in the three areas are complicated, because of the simul-
taneous presence of several wavelengths, first described by Knaapen et al. [2001].
An impression of the pattern is given by Figure 5.8b for one of the subareas in
the Southwest of the Short Stay anchorage area. See Knaapen et al. [2001] for
a high-resolution view of the pattern. However, the directions of highest vari-
ability are rather uniform over the three areas, as shown by Figure 5.8a. The
superposition of the sand wave patterns makes it difficult to find a dominant
wavelength per subarea: a pattern with a wavelength of about 160 m [Van Dijk
et al., 2008], about 250 m [Knaapen, 2005], and about 550 m [Knaapen et al.,
2001] are reported, see Table 5.1. We only observe the two larger wavelengths,
and consequently set the boundaries of the search interval for deformation anal-
ysis at Lmin=200 m and Lmax=900 m. The resulting dominant wavelengths are
distributed over the full search interval, while their spatial distribution seems
random.

Figure 5.9 shows histograms for the individual areas, and for the three areas
as a whole. Since the histogram of all areas is based on more data, it is possible
to have bins at a higher resolution. Peaks are observed around 400 and 700 m,
which differs from the values in literature (Table 5.1). Also compare the SBES
wavelengths of the Noordhinder Junction with the MBES wavelengths. The dis-
tribution of the MBES wavelengths is more peaked, around the two wavelength
maxima. For the other two areas, mainly MBES surveys are used; they show
clearer maxima than the Noordhinder junction SBES wavelengths. We explain
this by the absence of an interpolation procedure for MBES surveys. The in-
terpolation must be done in the across-track direction, which usually coincides
with the direction of the crests. Therefore, interpolation creates additional spu-
rious structures that are elongated in the crest direction, thus disturbing the
original pattern.

5.4.2 Temporal characterization

Grid analyses

For the Short Stay anchorage area and the Eurogeul Approach area, dynam-
ics were found by neither the two-dimensional deformation analyses, nor the
one-dimensional deformation analyses. For the Noordhinder Junction, the two-
dimensional analyses of SBES surveys show a downward trend in bed level d(b)

for almost every subarea, in some cases accompanied by outliers. The analyses
of the MBES surveys do not show such a trend anymore, only some outliers.
The results are presented in Figure 5.10. The four SBES surveys were carried
out between 1988 and 1995, and the six MBES surveys between 2001 and 2006.
Such a sudden change between these two analysis periods is most likely due to
human activities. A potential explanation is the change in dredging strategy
that was made around the year 2000: the sediment dredged from the sand wave
crests was not removed anymore, but stored in the troughs. This means that
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the average bed level could have become deeper during the SBES period, but
not during the later MBES period.

Dynamics were not detected for the sand wave patterns of the Noordhin-
der junction, neither from the two-dimensional analyses, nor from the one-
dimensional analyses. Apparently, the removal of sediment from the highest
crests was insufficient to be detected as a decrease in amplitude, but large
enough to be detected as a change in bed level. It is shown in Chapter 3 that
the procedure is more sensitive to bed level dynamics than sand wave ampli-
tude dynamics, because the Minimal Detectable Biases are smaller for bed level
dynamics.

For the Noordhinder Junction, there are no subareas with more than one
outlier in bed level d(b) (Figure 5.10). To explain the outliers, we use Figure 5.11.
It shows how the outliers are distributed in time. The outliers of the MBES
analyses are all due to the last survey, in 2006 (Figure 5.11a). They describe a
depth decrease of half a meter, with a surprisingly small deviation between the
subareas (Figure 5.11b). The outliers for the SBES analyses are due to either
the first or the second survey, in 1988 and 1992. Like the MBES outliers, the
outliers of the second survey also describe a depth decrease of half a meter, with
a small deviation. The outliers of the first survey, however, describe a depth
increase, with a large deviation between the subareas. The outliers in the SBES
surveys indicate that the detected trends in bed level are not always linear. The
shallower outliers for the most recent MBES survey may indicate that the trend
toward deeper bed levels has not only stopped, but even reversed.

Grid node analyses

In Section 5.4.3, we will compare the results of deformation analysis with the
results of trend analysis [Wüst, 2005]. Trend analysis provides for trends in
depth at a specific location. To facilitate such a comparison, we now consider
the largest upward trend per subarea from the results of the zero-dimensional
deformation analysis per grid node. The results are plotted for the four ana-
lyzed SBES surveys and for the six analyzed MBES surveys of the Noordhinder
Junction, and for the Short Stay anchorage area and the Eurogeul Approach
area, in Figure 5.12. As we already have detected a bed level trend in down-
ward direction for the Noordhinder Junction SBES surveys, it is logical that
there are hardly any subareas for which a nodal upward trend is detected, see
Figure 5.12a. The Noordhinder Junction MBES surveys and the surveys of
the other two areas show more upward trends, mostly of the order of a few
decimeters a year (Figures 5.12b-c). However, one extreme value is visible in
the Northeastern corner of the Noordhinder Junction, for the MBES surveys.

The subarea with the largest upward trend is indicated with an arrow in
Figure 5.12b, and shown in Figure 5.13. The isolines represent equal depth,
where the darkest lines are the shallowest. It is clear from Figure 5.13 that
most of the dynamics are found around the crests. The maximum upward trend
is detected for the grid node at (x, y)=(275 m, 75 m). At this node, two outliers
are detected in addition to the trend. The dynamics at this node are depicted
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Figure 5.10: Dynamics of bed level d(b) for the Noordhinder Junction: (a) SBES
surveys; (b) MBES surveys. (The values of the detected downward trends are 0.1
to 0.3 m/yr in downward direction, shown by the shade of the triangles; the values
of the outlying bed levels are 0.4 to 1.0 m, shown by the shade of the circles. The
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outlying bed levels 0.2 to 0.8 m.)
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Figure 5.11: Outliers in bed level d(b) per survey for the Noordhinder Junction:
(a) number of outliers per survey, summed over all subareas; (b) average bed level
change and variation in bed level change, for the planar outliers. Figure (a) shows
that there are no sand wave outliers, and Figure (b) provides details on the value
(squares, positive is shallower) and variation (error bars, at a 95% confidence level)
of the planar outliers. (The shade corresponds to the number of subareas for which a
survey is used, between 14 and 72, darker is larger number of subareas.) The analysis
period for the four SBES surveys is 1988 to 1995, and for the six MBES surveys 2001
to 2006.

in Figure 5.14. The detection and subsequent removal of outlying bed level
values has caused the detection of a trend, which is only based on the last three
bed level values. If, instead, the last two surveys would have been qualified as
outliers, a linear trend in the other direction would have been found instead.
This example shows that the detection of several outliers in combination with a
trend indicates that the true trend is nonlinear, because the rate of change for
depth changes in time. A cause for the nonlinear trend could be local dynamics
of the nearby crest.

5.4.3 Discussion: sand wave migration and trend analysis
in literature

Sand wave migration in the Selected Track and Noordhinder regions was previ-
ously studied by Van Dijk et al. [2008] and Knaapen [2005], and trends in depth
of those areas by Wüst [2005] (Figure 5.2). The method used by Knaapen [2005]
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Figure 5.12: Maximum upward trends ḋ
(b)

of the zero-dimensional grid node analysis
for: (a) the SBES surveys of the Noordhinder Junction; (b) the MBES surveys of the
Noordhinder Junction; (c) the Eurogeul Approach area and the Short Stay anchorage
area. (The maximum upward nodal trend per subarea is 0.0 to 1.2 m/yr, and the
average 0.3 m/yr. The shade corresponds to the value of the maximum upward nodal
trend per subarea. The uncertainties at a 95% confidence level are 0.3 m/yr.) A cross
indicates there are no upward nodal trends for that subarea. The arrow indicates the
subarea shown in detail in Figure 5.13.

derives sand wave migration from automatically detected crest and trough posi-
tions. This way, it is possible to study sand wave asymmetries and irregularities.
Van Dijk et al. [2008] estimate morphological parameters like crest and trough
position per survey, from which they estimate their change in time. They are
able to estimate changes in wavelength, which our analysis does not allow for.
The estimated migration rates of Van Dijk et al. [2008] and Knaapen [2005] are
of the order of several decimeters a year (Table 5.1).
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Figure 5.13: Detailed results of the zero-dimensional grid node analysis for the sub-
area in the Northeastern corner of the Noordhinder Junction, which shows the largest
maximum in Figure 5.12. The dynamics in depth d(b) per node are shown, with a
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of 1.2 m/yr at (x, y)=(275 m, 75 m). At this location, a
symbol for an upward trend in combination with two outliers (thick edges) is visible.
Also, isolines of equal depth are shown to indicate the sand wave pattern. (The darkest
lines are the shallowest.) The Dynamics at this node are shown in Figure 5.14.

However, crest and trough detection is prone to positioning and depth errors.
Depth errors potentially play a significant role in the detection of local minima
and maxima, and positioning errors in their location. Deformation analysis, on
the other hand, uses a grid of depth values on fixed positions, thereby strongly
reducing the dependence on errors in crest and trough identification. The results
of the one- and two-dimensional deformation analyses did not display any sand
wave dynamics, and we conclude that the migration rates are not significant.

Wüst [2004] developed a method to estimate upward trends in depth at
specific locations, termed trend analysis, see also Lindenbergh et al. [2007];
Knaapen et al. [2005]. Results for the areas around the Eurogeul approach
are given in Wüst [2005] and in Figure 5.15. Per subarea of a few square
kilometres, the maximum upward trend is shown. A comparison with the zero-
dimensional results per grid node of Figure 5.12 shows that the maximum results
of deformation analysis are larger. This is explained by a number of reasons.
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Figure 5.14: The dynamics of the node at (x, y)=(275 m, 75 m). The white circles
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, without the two outliers for the first two surveys. The vertical lines and the
crosses indicate the 95% confidence intervals of the nodal depth values and the linear
trend, respectively.

1. Our deformation analysis allows for a combination of a linear trend and
outliers. As already concluded in Section 5.4.2, a detected linear trend in
the presence of several outliers indicates nonlinear behaviour instead, and
the linear estimate does not represent a constant rate of depth change.
The large trend values of deformation analysis may be the results of the
qualification of values that cause a reduction of the size of the trend as
outliers, which subsequently have no impact anymore on the estimation
of the linear trend.

2. A trend analysis estimates the trend at the moment of the last survey,
while deformation analysis, in the absence of outliers, estimates an average
trend over the complete time interval of all surveys.

3. The used surveys are not the same for the two types of analysis.

4. The results of the trend analyses are valid for the shallowest locations
within the three areas. Often, the large upward trends in the bed levels
of the deformation analysis results are positioned on deeper parts of the
three areas.

The largest maximum of deformation analysis in Figure 5.12c is larger than the
largest maximum of the trend analysis (1.2 m/yr versus 0.3 m/yr), but the aver-
age maxima are roughly similar (0.3 m/yr versus 0.2 m/yr). The upward nodal
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Figure 5.15: Upward trend estimates for depth by Wüst [2005]. (The maximum
upward nodal trend per subarea is 0.1 to 0.3 m/yr, and the average 0.2 m/yr. The
shade corresponds to the value of the maximum upward nodal trend per subarea.)

trends are estimated by the deformation analysis procedure with an uncertainty
of 0.3 m/yr at the 95% confidence level. This makes the difference between the
results of both methods negligible, except for the very large 1.2 m/yr trend,
shown in Figure 5.13.

5.5 The region West of IJmuiden: sand wave migration

The IJgeul Approach area and IJgeul Approach anchorage area show a com-
plicated sand wave pattern, which potentially endangers shipping because of
its shallow depth in combination with expected sand wave dynamics. In this
region, there are no analyses available in literature on sea floor dynamics. The
available surveys are listed in Appendix 5.A. Both the areas in the region West
of IJmuiden are shown in Figure 5.16. Although these areas have a guaranteed
depth, no dredging history is available [Stolk, personal communication].

5.5.1 Spatial and temporal characterizations

An overview of the available surveys is given in Figure 5.17a, the spatial charac-
terizations in Figure 5.17a-c, and the dynamics using a two-dimensional defor-
mation analysis in Figure 5.18 for bed level and in Figure 5.19a-b for sand wave
dynamics. The results for the areas around the IJgeul Approach are similar to
the results for the areas around the Eurogeul Approach: the distribution of the
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Figure 5.16: Location of the IJgeul Approach area and IJgeul Approach anchorage
area.

wavelengths has two peaks, the largest one at around 400 m, and a second one
at around 700 m, see Figure 5.20.

The DIGIPOL-directions are uniform over the area, but the wavelengths are
not: the sand wave pattern is in fact more complicated than the spatial charac-
terizations can deal with. In some cases, this leads to the rejection of the sand
wave extension, but more often a sand wave is found, for which the wavelength
strongly depends on more or less random properties, like the locations of the
defined boundaries of the subarea, and the presence of sand wave irregularities,
i.e. bifurcations and finite-length crests.

The central part of the area appears to become deeper over time, see Fig-
ure 5.18. The Western and Eastern parts show outliers. Although no dredging
history is available, depth maintenance may explain the bed level dynamics.
Many of the sand wave patterns show a trend, which is by definition detected
for both amplitude change and migration. The detected trends in amplitude
are very small, though: the maximum absolute rate in amplitude factor is 3% a
year. The detected migration rates are several meters a year, all in Northeastern
direction. The maximum rate is 7 m/yr, which is of the same order as found
for the Maas West anchorage area (Chapter 4), also located relatively close to
the coast.

The results show several outliers in bed level (Figure 5.18), and only one
for the sand wave (Figure 5.19a-b). The June 2003 survey caused the single
sand wave outlier, for which the amplitude is 36% smaller, and the position has
changed 26 m to the Northeast. Their 95% confidence intervals are 37% and 18
m, respectively, which shows that this outlier is only significant for the position
of the pattern.

Most bed level outliers originate from the first or second survey. These
surveys are outlying for 16% and 20% of the subareas, respectively. The outlier
values are on average 0.3 m shallower and 0.3 m deeper, respectively, with
deviations of up to 0.1 m. The typical uncertainty of an estimated bed level
outlier is 0.2 m, at a 95% confidence level. Although Figure 5.18 shows two
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Figure 5.17: Spatial results for the IJgeul Approach area: (a) number of surveys and
characterization; (b) DIGIPOL directions θ(x) and quotients max(v)/min(v) (quo-
tients 1.6 to 6.0, darker is larger) and (c) dominant wavelengths L(d) (between 234 and
852 m, shown by the shade of the circles, darker is larger wavelength) and amplitudes
A (between 0.3 and 1.5 m, shown by size of the circles, larger is larger amplitude).
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Figure 5.18: Dynamics of bed level d(b) for the IJgeul Approach area. (The values
of the detected downward trends are between 0.01 m/yr and 0.03 m/yr in downward
direction, shown by the shade of the triangles; the absolute values of the outlying bed
level values are between 0.2 and 1.1 m, shown by the shade of the circles and diamonds.
The uncertainties at a 95% confidence interval of the trends are 0.01 to 0.08 m/yr,
and of the outlying bed levels 0.1 to 0.3 m.)

clear parts of the area in which the bed level outliers are present, neither of the
two surveys with outlying bed levels corresponds to such a specific part.

5.5.2 Correlations between migration and morphology

Analogously to Chapter 4, we try to find correlations between the migration

rates ξ̇
′
on one hand, and the bed level d(b) and a migration predictor ξ̇

(p)
on

the other hand. The migration predictor was developed by Knaapen [2005],
and is based on shape information of a sand wave pattern only. Using these
correlations, we aim to confirm previously studies by Van Dijk and Kleinhans
[2005] for bed level, and by Knaapen [2005] for the migration predictor. We
calculate an adapted version (Chapter 4) of the migration predictor as:

ξ̇
(p)

= c(a)L(d)2σ(m)2/σ
(s)3
d , (5.1)

based on dominant wavelength L(d), morphological variance σ(m)2, and spatial

depth variation σ
(s)
d (Chapter 4). The adapted calibration constant c(a) has a

value of 6.49·10−5 yr−1. The linear correlations are:

ξ̇
′
= add

(b) + bd (5.2)
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(a) Amplitude dynamics
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Figure 5.19: Results of sand wave dynamics for the IJgeul Approach area: (a) dy-
namics of amplitude factor A′ (The maximum trend values are a 2 %/yr decrease and a
3 % increase, the absolute values of the trends are shown by the shade of the triangles;
the outlier is a 36 % decrease. The uncertainties at a 95% confidence interval of the
trends are 1 to 3 %/yr, and of the outlying amplitude factor 37 %.); and (b) dynamics
of crest position ξ′ (The maximum trend in Northeastern direction is 7 m/yr, and
3 m/yr in Southwestern direction, the absolute values of the trend values are shown
by the shade of the arrows; the outlier represents a position difference of 26 m. The
uncertainties at a 95% confidence interval of the trends are 1 to 5 m/yr, and of the
position outlier 18 m.)
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Figure 5.20: Histogram of the dominant wavelength L(d) [m] of the IJgeul Approach
area. The search interval and bin resolution are equal to Figure 5.9e.

Table 5.5: Correlation estimates a, b and their uncertainties expressed as 95% confi-

dence limits, given as estimate ± uncertainty, for migration rate ξ̇
′
with bed level d(b)

and migration predictor ξ̇
(p)

. These estimates are used in equations 5.2 and 5.3. Also,
correlation coefficients ρ are given.

a b ρ

d(b) −0.16± 0.11 yr−1 6.1 ± 2.6 m/yr −0.27

ξ̇
(p) −0.01 ± 0.16 2.0 ± 0.4 m/yr −0.01

and

ξ̇
′
= aξ ξ̇

(p)
+ bξ. (5.3)

Estimates of the coefficients a, b for the region West of IJmuiden are given in
Table 5.5. In contrast to the Maas West anchorage area (Chapter 4), hardly any
correlation is found with bed level and shape information. Relevant differences
between the two areas are the smaller depth of the Maas West area (16-23 m
instead of 21-28 m), and the smaller wavelengths (values up to 360 m instead
of values up to 852 m).
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5.6 The region North of Terschelling: a flat sea floor

The Terschelling-German Bight traffic separation scheme (TE-TSS) contains a
shallow and rather flat part North of Terschelling (Figure 5.21). In the defor-
mation analysis procedure, we disable the sand wave extension for this region,
but allow for the slope extension. This is done because residual systematic er-
rors in the track direction may result in the detection of a spurious sand wave
pattern. The track direction coincides with the direction of the traffic separa-
tion scheme. Figure 5.21a shows that systematic measurement errors dominate
the residuals, as the DIGIPOL-directions of highest variation are approximately
perpendicular to the track direction.

We analyze four surveys of this area, measured between 1996 and 2005 (Ap-
pendix 5.A). The absence of rhythmic bed forms means that the characteri-
zations of the subareas by a horizontal or sloping plane is close to the actual
shape of the sea floor. Therefore, it turns out that most of the overall tests are
accepted, for the spatial characterization of the two-dimensional analyses (step
1). Thus, it is not necessary to increase the variances and covariances with
morphological components by the LSVCE procedure, and as a consequence the
confidence intervals for the depth values in the temporal characterization (step
2) are smaller than for the other areas. This, in turn, makes the temporal esti-
mation accurate, yet sensitive to extensions, see Figure 5.21b. The deformation
analysis procedure accepts many extensions for the bed level, often in the order
of a decimeter only, resulting in linear trends of a few centimeters a year only.

As only four surveys are available, the detection of more than one outlier to
the linear trend means that there are as many bed level parameters as there are
surveys, and the subarea is qualified as generally deforming. This is denoted
by the diamond-shaped symbols in Figure 5.21. The survey showing a single
outlying depth always is the 2002 survey, which is on average 0.3 m deeper than
the upward trend value for that survey would have been, with a deviation up
to 0.1 m.

5.7 Discussion

The results of the considered regions were discussed in the previous Sections.
Here, we discuss the methodical and the morphological question of the Intro-
duction.

5.7.1 Methodical

The application of deformation analysis to areas on the BNLCS shows results
that reveal diverse dynamics, with an associated uncertainty. To obtain these
results, it is necessary to carefully set several input parameters, and use limita-
tions for the amount of data used. The input parameters are the error variance
and covariance models, the levels of significance, the wavelength search inter-
val, and the presence of tidal sand waves. Therefore, detailed knowledge of the
meta-data of the used surveys is necessary, as well as some prior knowledge
of the sea floor of the subareas. The definition of subareas of a few square
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Figure 5.21: Results for the shallow part of the TE-TSS: (a) DIGIPOL directions
θ(x), and quotients max(v)/min(v) (between 1.4 and 4.7, darker is larger) and (b)
dynamics of bed level d(b). (The values of the upward trends are between 0.03 and
0.05 m/yr, shown by the shade of the triangles. The bed level variations due to
outliers or general deformation are up to 0.37 m, shown by the shade of the circles
and diamonds. The uncertainties at a 95% confidence interval of the trends are 0.01
m/yr, and of the outlying bed levels 0.1 m.)
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kilometers, in combination with the definition of grids with a grid spacing of
at least 50 m, gives results that are sufficiently detailed in space, and still not
too computation-intensive. To keep the computations feasible, the number of
surveys needs to be limited to less than about eight, for such a grid.

Still, some methodical artifacts appear in some cases, especially if a trend is
detected in combination with several outliers. In that case, the interpretation
could only be that a nonlinear trend is present, and the estimated dynamics
are not useful. Further, the detection of sand waves suffers from the choice
of limits of the search interval. Areas that have several patterns with different
wavelengths superimposed show the limited usability of a search procedure with
a single dominant wavelength.

5.7.2 Morphological

The analyses of the regions Noordhinder and West of IJmuiden reveal a wide
variety of dominant wavelengths. Two wavelengths, of around 400 and 700 m,
seem to dominate in both these regions. This contradicts the wavelengths of
about 250 and 550 m reported in the literature.

An overview of sand wave behaviour on the BNLCS is given in Figure 5.22,
including the behaviour of the Maas west area, described by Chapter 4. The
sand wave regions West of Rotterdam and West of IJmuiden are located closer
to the coast than the other two regions that have sand waves. They also are the
two regions that reveal sand wave migration, of up to 7.5 m/yr. It is interesting
to note that the region West of Rotterdam seems to have migration rates that are
correlated with depth and shape information, while the region West of IJmuiden
does not show this correlation.

The two sand wave regions near the coast show migration and have esti-
mated bed levels d(b) of 20 to 25 m, while the regions away from the coast
do not show migration and are 35 to 40 m deep. This observation confirms
the results of Van Dijk and Kleinhans [2005], who found a similar correlation
for other areas in the Southern North Sea. A more complete evaluation of the
morphological properties of the regions would also include a comparison with a
process-based model, using hydrodynamic information and sediment properties.
Such an evaluation has been done for the Maas West area Chapter 4.

5.8 Conclusion

Deformation analysis was successfully applied to bathymetric surveys of a sandy
seafloor in various regions on the BNLCS, even in the presence of complicated
sand wave patterns. The bed level dynamics of the five analyzed regions are
limited to several decimeters over the past two decades, except for the zero-
dimensional results. In this case, the largest upward trends and outliers are
usually due to sand wave migration. Large dynamics are absent, except for
migration of the sand waves relatively close to the North and South Holland
coasts. Migration rates correlate with bed level and shape information for only
one of those two regions. These dynamics should result in a higher resurvey
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Figure 5.22: Overview of sand wave characteristics for analyzed regions on the Bel-
gian and Netherlands Continental Shelf.

frequency for shallower sand wave areas, than for deeper sand wave areas or
areas without a sand wave pattern. No generic conclusions on the impact of
human interventions can be drawn, because sand wave dynamics in the two
areas with a maintained depth differ from each other.

Appendices

5.A Overview of used surveys

All survey data used are given in the geodetic datum WGS84 in combination
with a UTM31-projection. The data are reduced to Lowest Astronomical Tide.
Only surveys are used for which the data are available on the highest resolution,
i.e. each 5x3 m bin is filled, in track direction. All surveys are available in
meters with two decimals, horizontally and vertically. All gross errors were
removed from the surveys, and approved by the commanding officer and the
Hydrographic Office of the RNLN.

Operational specifications of the surveys are given in the Tables 5.7 and 5.8.
The track direction is decided by the commanding officer of the survey vessel,
and can therefore vary between surveys. As a constant direction is not possible,
due to e.g. traffic, the track direction is estimated from the data up to the
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Table 5.6: Overview of survey systems used for each survey. Operational details of
the surveys are given in the Tables 5.7 and 5.8.

system code survey system
1 Hyperfix, pressure gauges
2 DGPS SA on, pressure gauges
3 DGPS SA on, PreMo
4 DGPS SA off, pressure gauge
5 DGPS SA off, PreMo

nearest five degrees. The first day of the month in which the survey started is
used as the survey moment.

The technical specifications are given in Table 5.6. The presence of Selective
Availability is indicated, which is a deliberate degradation of the GPS signals.
As differential GPS (DGPS) is used, the impact of SA is not large. The dif-
ferential reference station used is either part of the IALA chain, or the VeriPos
chain. The older surveys use the terrestrial Hyperfix system, which gives the
same order of positioning uncertainty as DGPS with SA, i.e. in the order of
10 m. DGPS without SA has an uncertainty of a few meters. The water level
reduction method is either based on measurements from pressure gauges placed
on the sea floor for the duration of the survey, or from permanent gauges in
combination with the PreMo prediction model.
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Table 5.7: Overview of SBES surveys, including survey track spacing h(t), survey
track direction East of North θ(t), and used survey systems for horizontal and vertical
reference. The area codes are given in Table 5.2, and the system codes in Table 5.6.

survey code area code start h(t) θ(t) system code
HY69 NH1 Mar. 1988 50 m 30◦ 1
HY71 WIJ1-2 Mar. 1990 50 m 45◦ 1
HY91022 ST1: Twin Jan. 1991 50 m 35◦ 1
HY92035 NH1 Mar. 1992 100 m 30◦ 1
HY92036 ST1: Twin Jun. 1992 50 m 35◦ 1
HY94035 NH1-3 Apr. 1994 100 m 30◦ 1
HY94036 ST1: Twin Apr. 1994 50 m 35◦ 1
HY95035 NH1 May 1995 50 m 30◦ 1
HY95036 ST1: Twin May 1995 50 m 35◦ 1
HY95068 ST4 Jun. 1995 100 m 25◦ 1
HY95041 NT1 Oct. 1995 125 m 70◦ 1
HY95071 ST1-3 Oct. 1995 100 m 35◦ 1
HY95069 WIJ1-2 Nov. 1995 125 m 20◦ 1
HY97081-1 ST1-3: South Aug. 1997 50 m 40◦ 2
HY97081-2 ST1-3: Central Sep. 1997 50 m 40◦ 2
HY97080 NT1 Sep. 1997 125 m 70◦ 2
HY98090 ST1-3: North Nov. 1998 50 m 40◦ 2
HY99091 WIJ1-2 Mar. 1999 125 m 20◦ 3
HY99102 ST1: Twin Mar. 1999 50 m 35◦ 3
HY00110 ST1-3 May 2000 50 m 35◦ 5
HY00116 ST4 May 2000 100 m 40◦ 5
HY01125 ST1-3: North Mar. 2001 50 m 40◦ 5
HY01126 ST1-3: South Mar. 2001 50 m 35◦ 5
HY02132 NT1 Mar. 2002 125 m 70◦ 5
HY02140 ST1-3 Aug. 2002 50 m 35◦ 5
NHI02001 NH3 Dec. 2002 100 m 30◦ 5
HY03152 ST1-3: North Mar. 2003 50 m 35◦ 5
HY02143 WIJ1-2 Jun. 2003 125 m 85◦ 5
HY03152-1 ST1-3: South Oct. 2003 50 m 50◦ 5
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Table 5.8: Overview of MBES surveys, survey track direction East of North θ(t), and
used survey systems for horizontal and vertical reference. The two-letter area codes
are given in Table 5.2, and the system codes in Table 5.6.

survey code area code start θ(t) system code
RWS180-01 NH2 Aug. 1997 90◦ 2
RWS179-01 NH3 Mar. 2000 90◦ 2
RWS046-02 ST1: Twin Feb. 2001 35◦ 4
RWS181-01 NH1 May 2001 70◦ 4
RWS182-01 ST1: Twin May 2001 35◦ 4
RWS043-02 NH3 May 2001 90◦ 4
RWS044-02 NH2 May 2001 90◦ 4
RWS045-02 NH1 Aug. 2001 70◦ 4
RWS283-03 NH3 May 2002 90◦ 4
RWS287-03 NH2 Jul. 2002 90◦ 4
RWS297-03 ST1: Twin Mar. 2003 35◦ 4
RWS292-03 NH1 Apr. 2003 70◦ 4
RWS235-04 NH3 Jul. 2003 90◦ 4
RWS238-04 NH2 Aug. 2003 90◦ 4
RWS011-05 NH1 Apr. 2004 70◦ 4
RWS012-05 ST1: Twin Apr. 2004 35◦ 4
RWS008-05 NH2 May 2004 90◦ 4
RWS005-05 NH3 Jun. 2004 90◦ 4
RWS265-05 ST1: Twin Mar. 2005 35◦ 4
HY05166 WIJ1-2 May 2005 75◦ 4
RWS262-05 NH2 May 2005 55◦ 4
RWS264-05 NH1 May 2005 70◦ 4
RWS020-07 NH3 May 2005 85◦ 4
HY05159 NT1 Jul. 2005 70◦ 4
RWS021-07 WIJ1-2 Jan. 2006 75◦ 4
HY06170 ST4 Feb. 2006 40◦ 4
RWS029-07 NH1 Jul. 2006 70◦ 4
RWS030-07 ST1: Twin Oct. 2006 35◦ 4



Chapter 6

The application of estimated sea floor

dynamics to improve

the resurvey policy of the

Netherlands Hydrographic Service

Abstract

Bathymetric resurveying at sea is a costly process with limited resources, yet necessary

for adequate nautical charts and therefore crucial for safe navigation. An important

factor in an efficient resurvey policy is the type and size of sea floor dynamics. By

formulating four indicators, we make recommendations for the resurvey policy of the

Hydrographic Service of the Royal Netherlands Navy on the Belgian and Netherlands

Continental Shelf. The continental shelf of these two countries is characterized by a

sandy sea floor covered with rhythmic patterns and by limited depth. These indicators

follow from the estimates for sea floor dynamics, as given by applying the statistical

method of deformation analysis. We present a concept for the shallowest likely depth

surface, on which we base two of the indicators. The other two indicators act as a

warning: they quantify the potentially missed dynamics, which makes the procedure

more robust in case of complicated morphology. We show clear differences in rec-

ommended resurvey priority between the five analyzed regions, which currently have

equal resurvey frequencies.

6.1 Introduction

The Hydrographic Service of the Royal Netherlands Navy (RNLN) is the Dutch
government office responsible for nautical surveying and charting, in order to
ensure the safety of navigation at sea. To guarantee the presence of accurate
information on e.g. depth on board, the usage of official nautical charts is manda-
tory for many types of ships. Nautical charts are based on bathymetric surveys
at sea, which is costly information that expires after limited time, because of the
changing nature of the sea floor in many sandy shallow seas. Especially tidal
sand waves, which are rhythmic patterns that are widely present on the Belgian
and Netherlands Continental Shelf (BNLCS), show dynamics for large parts of
the Southern North Sea. Tidal sand waves are characterized by wavelengths of
hundreds of meters and amplitudes of up to several meters.
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In order to manage bathymetric resurveys efficiently, it is necessary to plan
the deployment of the two hydrographic survey vessels of the Royal Netherlands
Navy according to a carefully designed resurvey policy. The policy assigns a
resurvey frequency to all areas of the BNLCS under RNLN responsibility. The
current policy is given in Figure 6.1. Due to various circumstances, the RNLN
has not achieved these resurvey frequencies over the past years, which makes
the justification of those frequencies by a comprehensive risk assessment even
more relevant [Dienst der Hydrografie, 2007].

Hydrographic offices around the world are considering ways to specify resur-
vey frequencies for shipping routes in shallow waters. Survey policies are made
worldwide, and published on the internet [NOAA Office of Coast Survey, 2008]
or in the literature [De Oliveira et al., 2007; Dehling, 2006; Whatrup et al.,
2005]. Ideally, the resurvey frequencies of a policy are based on five factors:

1. minimum depth;

2. draught, i.e. the depth of a ship’s keel under sea level;

3. shipping intensity;

4. human interventions;

5. sea floor dynamics.

Areas that are deeper than necessary for any surface navigation do not need to
be monitored as often as shallower areas (factor 1). The distinction between
shallow and deep usually lies at 40 m [International Hydrographic Organization,
2008a]. Draught (factor 2) often is most critical in shipping lanes, which are
potentially maintained at a larger depth than the surrounding sea floor.

Shipping intensity (factor 3) is important because of its direct impact on the
grounding risk in case of sea floor changes, and because it is a cause of changes in
depth in itself. Intense shipping increases the risk of cargo loss (like containers),
which enlarges the probability of undetected objects on the sea floor. Human
intervention in the natural processes of shallow sandy seas (factor 4) include
dredging, sand mining and dumping, land reclamation, and the placement of
objects on the sea floor (like wind farms) [Van der Veen, 2008; Roos et al., 2008].
Human intervention in natural processes also have an indirect effect that may
cause long-term changes in depth until tens of kilometres away from the location
of the intervention.

Present morphodynamic models allow for the qualitative prediction of the
effect of human intervention in the natural morphological processes, like areas
where accretion or removal of sediment is expected [Van der Veen, 2008; Roos
et al., 2008], or sand wave growth and migration [Besio et al., 2008; Németh
et al., 2007]. This knowledge gives opportunities to adapt resurvey frequencies
based on human interventions, past or planned, in combination with observed
sea floor dynamics (factor 5). This study presents a systematic way to use
knowledge of sea floor dynamics to optimize the resurvey policy. Although
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Figure 6.1: The 2003 resurvey policy of the Hydrographic Service of the Royal
Netherlands Navy, for the areas of the Belgian and Netherlands Continental Shelf
(BNLCS) under its responsibility. In the Selected Track for deep draught vessels,
Critical areas are defined that have a resurvey frequency of once every two years.
The Hydrographic Service does not survey the areas that are under responsibility of
Rijkswaterstaat North Sea, or their coastal directorates. (Figure courtesy of Lt I.J.
Nijman)
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several strategies currently are in use, a newly developed method known as
deformation analysis (Chapter 3) gives new opportunities.

Starting with Langeraar [1966], attempts have been made to quantify dy-
namics of the Southern North Sea for this purpose. The most recent estimates
are given in Chapter 4 and Chapter 5, using deformation analysis (Chapter 3).
This method is based on statistical testing theory, and is able to estimate dy-
namics of the sea floor using just a few morphological parameters and their
uncertainties. These estimates include the behaviour of tidal sand waves. How-
ever, the estimates of deformation analysis are not directly useful to recommend
changes in resurvey frequency. Therefore, we formulate a set of indicators that
enables prioritization of areas with respect to each other, for sea floor dynam-
ics. This serves as input for a future scientific validation of the resurvey policy
[Deltares, 2008].

Because of the differences in present and past resurvey frequency between
the areas, the number of available surveys and the time interval of the analyses
varies. Also, the morphology varies between the areas. This complicates the
comparison of detected depth reductions between the areas. To remove these
complications, we use observed shoaling rates, instead of observed depth differ-
ences between surveys. We reduce the resulting morphological parameters and
their uncertainty to just two indicators for detected behaviour of an area.

We add another two indicators for the risk of missed dynamics to the pro-
cedure, which is necessary because some dynamics are potentially too small to
be detected, given the uncertainty of the results. This is especially important
because the uncertainty of areas that are showing more irregular sand wave
patterns will in general be higher than the uncertainty of areas for which sand
wave patterns are absent or less irregular.

First, current practice on relevant aspects of hydrography, e.g. strategies
to include sea floor dynamics in resurvey policies, are given in Section 6.2.
Then, four indicators for the interpretation of sea floor dynamics are introduced
in Section 6.3. Indicator values for the results of the analyzed areas in the
Southern North Sea are presented in Section 6.4. In Section 6.6, we discuss
our findings in relation to other hydrographic and morphological concepts, and
make recommendations for the resurvey policy of the Netherlands Hydrographic
Service, using current hydrographic practice and the indicator results in our
discussion. We finish with some conclusions in Section 6.7.

6.2 Background: Hydrographic practice

6.2.1 Manual and automatic shoal biasing

Traditionally, depth values used for nautical publications are made shallower,
and thereby safer, using manual shoal biasing. Only the shallowest depth values
are depicted, assuming they are representative for the shallowest value that
could be present at any nearby location. Also, the isobaths, which are contour
lines of equal depth, are generalized (i.e. cartographically smoothed), dependent
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on the scale, towards the shallow direction only. In this process, the experience
of the cartographer plays a central role.

Recently, an alternative approach to shoal biasing was proposed, known as
the navigation surface [Smith, 2003; Smith et al., 2002]. The approach of the
navigation surface is algorithmic, which enables automatic processing, and thus
decreases the processing time of very large MBES data sets. Also, this approach
removes subjectivity from the processing of bathymetric surveys. The procedure
uses depth values and their uncertainty at a grid of nodes, generated by the
Combined Uncertainty and Bathymetry Estimator (CUBE) [Calder, 2003], or
potentially by Kriging [e.g. Dorst and Roos, 2008; Calder, 2006].

In the navigation surface approach, isobaths are generated by defocusing

using a double buffering algorithm, which generates a line at a constant distance
in the deeper direction, and subsequently generates the generalized line at the
same distance in the opposite direction. The constant defocusing distance is
scale-dependent, allowing for various levels of generalization.

6.2.2 Inadequately surveyed areas

The major part of the marine environment has never been adequately surveyed
[Monahan, 2007]. Even major international shipping routes have not been sur-
veyed according to modern standards [International Hydrographic Organization,
2008b]. Therefore, only the resources that are necessary to resurvey previously
surveyed areas should be spent, making more resources available to survey other
areas.

To mitigate the influence of inadequately surveyed areas, various methods
have been developed to indicate the quality of the survey to the mariner [Heap,
2007]. The most recent development is the introduction of zones of confidence
(ZOC) of the nautical chart, especially feasible for electronic nautical charts
(ENC-s) [International Hydrographic Organization, 2007; Johnson, 2004]. How-
ever, most of these concepts only focus on the quality and density of the mea-
surements. The aging aspect is not included, as it is impossible to get reliable
insight into sea floor changes, without a thorough analysis of a series of previous
surveys, or the application of a morphological model. With the introduction of
new analysis techniques, like the deformation analysis presented in this study,
and with the ongoing development of morphological models, the inclusion of the
effect of age in a quality indicator becomes possible.

6.2.3 The inclusion of sea floor dynamics in resurvey policies

Among hydrographic services, the following strategies are in use to deal with
the factor sea floor dynamics in resurvey policies:

1. interpretation of a series of archived bathymetric surveys, as in this study;

2. use of exploratory surveys, in which a small part of an area is measured,
and the decision on the resurvey of the whole area is based on the analysis
of the exploratory survey;
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3. observation of the general morphology of the sea floor, using a remote
sensing technique;

4. application of morphodynamic models to predict sea floor change.

The interpretation of a series of bathymetric surveys (strategy 1) is the most
traditional method, documented by e.g. Burton [1977] and Kember [1984]. An
example of the application of exploratory surveys (strategy 2) is the measure-
ment of a single survey track over a sand dune [Le Bot et al., 2000].

An example of a remote sensing technique (strategy 3) is the interpreta-
tion of radar reflections on surface waves, which are influenced by changes in
depth. Radar observations are available from satellites or from terrestrial sta-
tions [Calkoen et al., 1998; Vogelzang, 1997; Vogelzang et al., 1997]. Also,
water color is an indicator of depth for seas with clear water [Su et al., 2008;
Lafon et al., 2004]. Experiments with radar remote sensing for the North Sea
have given results of mixed quality [Swart et al., 2006]. Kember [1984] stresses
that any review of resurvey frequency should first investigate sea floor changes,
preferably quantitatively, and subsequently should attempt to understand the
morphological mechanisms (strategy 4) that cause these changes.

6.3 Method: indicators of sea floor dynamics

6.3.1 Overview of deformation analysis

Input and output

Deformation analysis is an application of statistical testing theory [e.g. Koch,
1999] to analyze a series of S bathymetric surveys. The application to sea floor
data requires depth values at the P nodes of a grid, the uncertainty of each
depth value, and the time of each survey. The size of the grid is limited to
about 20 × 20 nodes, for computational reasons. The uncertainty is described
by an error model, giving variances and covariance functions for the surveys, see
Chapter 4 for the Royal Netherlands Navy (RNLN) SBES survey suite. Further,
it is assumed that the performance of the Rijkswaterstaat (RWS) and RNLN
MBES survey suites is according to order 1 of the S44 standard [International
Hydrographic Organization, 2008a].

The procedure allows us to select N significant morphological and morpho-
dynamic parameters for an area, based on M depth values (M = PS), and
subsequently provide estimates for these parameters, including confidence in-
tervals. This results in a representation of the measured sea floor that consists
of the characterization by a limited number of parameters, and the dispersion

of the residual variations from the characterization, which is described by the
variances and covariances of the parameters. The relation between the depth
values and the estimated parameters are linear or linearized. This allows us
to follow a Best Linear Unbiased Estimation (BLUE) for the estimation of the
parameters of the characterization, and for the estimation of their dispersion
(Chapter 3).
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Morphological characterization

Let us assume the input is available in a three-dimensional coordinate frame
(x,y,z), in which the three directions are perpendicular to each other, and depth
d is given as z = −d at horizontal locations (x,y). Deformation analysis sub-
sequently tests extensions of the set of morphological parameters, starting with
the simplest characterization possible, which is the single parameter bed level
d(b), assumed constant in space and time. Then, spatial and temporal exten-
sions to this set are made. Such an extension is accepted if the so-called test
quotient q is the largest over all available extensions, and if this test quotient
is larger than one. The characterization is extended until the remaining test
quotients are all smaller than one.

Spatial extensions (step 1) to the initial parameter bed level d(b) are two bed
slope parameters ψ(x) and ψ(y) in both the horizontal directions, and two sand
wave parameters: amplitude A and crest position ξ. Sand wave patterns are
assumed to have a constant horizontal direction of the pattern variation, which
is the x-direction of the grid, perpendicular to the constant direction of along-
crest uniformity, which is the y-direction of the grid. We usually work with
relative sand wave parameters, with respect to their values Aref and ξref for a
reference survey: amplitude factor A′ = A/Aref and migration ξ′ = ξ − ξref .
To determine the dominant wavelength L(d) of the sand wave extension, the
test quotient becomes a function of wavelength: q = q(L). Consequently, a
wavelength search interval [Lmin,Lmax] needs to be defined. Subsequently, the
best fitting wavelength is obtained by maximizing q(L). The wavelength search
interval varies per area for which deformation analysis is applied (Chapter 5).

The dynamic extensions (step 2) define a linear parameter trend in all sur-
veys (denoted e.g. ḋ(b) for bed level), or outlying parameters for survey s, for

each s = 1, · · · , S (denoted e.g. ∆d
(b)
s for bed level). Because the two parame-

ters ψ(x) and ψ(y), and the two parameters A and ξ are mutually correlated, an
extension contains the two bed slope parameters, or the two sand wave param-
eters. First, these two trend extensions are tested. Depending on the values of
the test quotients, the trend extensions are added to the characterization. After
that the 2S outlier extensions are tested, to account for nonlinear behaviour or
systematic errors in a survey.

The levels of significance α specify the probability that an extension to a
representation is incorrectly selected. We use the values for α that were set in
Chapter 4, which are 5%, 7% and 5% for the spatial extensions, the trend exten-
sions and the outlier extensions, respectively. Deformation analysis is possible
using three different numbers of dimensions: a zero-dimensional analysis per
grid node, a one-dimensional analysis per grid line in the direction of highest
variability, and a two-dimensional analysis of a full grid. The specified levels of
significance are adopted for all three numbers of dimensions.
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Morphological residuals

In our procedure, the iterative acceptance of extensions continues until all re-
maining extensions have a test quotient smaller than one. If the characterization
fits the series of surveys well enough, from a statistical point of view, the final
parameter values of that step are calculated, as well as the associated uncer-
tainties. The overall test is used for this decision, with its overall test quotient
q(o) smaller than one to pass the test.

However, if the differences between the final characterization of a step and
the measured sea floor are larger than can be explained by the uncertainty of
the depth measurements, the characterization is insufficient. The differences are
called the residuals, which contain measurement errors and residual variations,
like asymmetries and bifurcations in the sand wave pattern, and small-scale⋆

rhythmic features like mega-ripples. Instead of defining additional parameters,
which would complicate the characterization, we assume that the residual varia-
tion is a random function, and we include additional morphological variance and
covariance components in the uncertainty, using Least Squares Variant Compo-
nent Estimation (LSVCE) [Teunissen and Amiri-Simkooei, 2008].

The LSVCE-procedure is followed for both the steps explained above. (To
distinguish the two overall test quotients, the quotient that tests the morpho-
logical characterization in step 1 is denoted q(o,m), and the quotient that tests

the temporal characterization in step 2 is denoted q(o,t).) The variances and
covariances, describing the dispersion, that are calculated in step 1 are used
in step 2. An increased dispersion during step 1 therefore has consequences in
step 2. Firstly, it is less likely that an extension will be accepted in the second
step. Secondly, the resulting dynamic parameters will be estimated less accu-
rately. At the end of step 2, the second LSVCE procedure only influences the
uncertainty of the final parameter estimates.

6.3.2 Domains and dimensions

One way to describe the representation is in the parameter domain, given by the
N×1 vector of estimated morphological parameters û and its covariance matrix
Cu, for the characterization and the dispersion respectively. The main diagonal
of Cu contains the variances σ2

u of the parameters û. We assume a Gaussian
distribution for the deviations described by the dispersion. In vector û, there
are U parameters ûref at reference time tref . Depending on the complexity of the
detected dynamics, V dynamic parameters v̂ follow the reference parameters in
û, with N = U + V and N ≤ US.

Alternatively, the representation is described in the depth domain, given by
the M × 1 vector of estimated depth values m̂ and and its covariance matrix
Cm, at the grid nodes xp. The relation between both the domains is linear
(Chapter 3):

m̂ = Aû, Cm = ACuA
T, (6.1)

⋆ Large-scale and small-scale are used throughout this study in its general definition,
meaning ‘wide ranging’ and ‘limited ranging’ respectively. In its cartographic definition, these
meanings are reversed.
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Figure 6.2: Measured depth d in relation to (a) the true, unknown depth d, including
the 95% confidence interval around the measured depth, representing the measurement
error as described by Cd; (b) morphological characterization in the depth domain
m̂ including the 95% confidence interval around the measured depth, representing
the measurement error and residual morphology as described by Cm. The difference
between the measured depth and the characterization is the residual, consisting of a
measurement component and usually a morphological component. The probability
that the true depth d is larger than the deeper limit of the confidence interval is 2.5%
for both d2.5% (graph (a)) and m̂2.5% (graph (b)), and this probability is 97.5% for
the shallower limit of both d97.5% (graph (a)) and m̂97.5% (graph (b)).

in which A is an M ×N coefficient matrix.

The representation in the depth domain by m̂ and Cm is smoothed with
respect to the original surveyed depth values d and Cd: the estimation procedure
removes residual variations and reduces measurement errors. This is illustrated
in Figure 6.2a. The smoothing of the characterization d to m̂ is compensated for
by the increase of the dispersion from Cd to Cm, which contains a component
for the residuals, as in Figure 6.2b. The variances on the main diagonal of
a covariance matrix C are used to construct a confidence interval around the
estimates. For the 95% confidence interval, the lower limit at 2.5% is denoted by
d2.5% or m̂2.5%, and the upper limit at 97.5% by d97.5% or m̂97.5%. Analogously,
the estimates d and m̂ are denoted by d50% and m̂50%.

The more dimensions we use for the representation, the fewer the parameters
in the parameter domain. A 0D approach uses the morphological parameters to
describe the P nodes, an 1D approach to describe

√
P grid lines (if the grid is
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square and oriented in the direction of highest variability), and a 2D approach
uses only one grid. The maximum number of spatial parameters per survey per
analysis U is one (d(b)), four (d(b), ψ(x), A′ and ξ′) and five (d(b), ψ(x), ψ(y),
A′ and ξ′), respectively. The maximum number of parameters is therefore the
number of analyses for a grid times the maximum number of spatial parameters:
P ·S for 0D,

√
P ·4S for 1D, and 1·5S for 2D. As the 2D parameter vector contains

fewer parameters, it is unable to represent to same sea floor complexity as the 1D
vector, which causes the smoother representation in the depth domain. The 0D
representation is able to use the same number of PS parameters as the number
of measurements, which means it is able to reproduce the original morphology
at its full complexity, if the maximum number of S temporal parameters would
be used for all P nodes.

In practice, it is rare that sand wave patterns are regular in a 2D analysis,
see e.g. Section 6.4. This means that the 1D representation approximates the
morphology significantly better than the 2D representation. Therefore, we will
use the 1D results to calculate indicators for sea floor dynamics, as they give
the best combination of small residuals and filtering of small-scale irregularities.

6.3.3 Shallowest likely depth values

Prediction

The present resurvey frequency of an area defines the expected moment of next

survey tS+1 as the moment of last survey tS plus the resurvey period. In practice,
it is not always possible to survey according to the planned resurvey frequency.
Therefore, the average period between surveys T̄ is used as the resurvey period
instead:

tS+1 = tS + T̄ , T̄ = (tS − t1)/(S − 1). (6.2)

To predict the expected sea floor morphology at t = tS+1, we apply linear
extrapolation. We define the U × 1 vector ûS+1 of predicted morphological
parameters as:

ûS+1 = Fû, Cu,S+1 = FCuF
T. (6.3)

The U × N coefficient matrix F consists of an U × U identity matrix and an
U ×V submatrix for the dynamic parameters in û. The columns for the outlier
estimates ∆us are vectors of zeros, and the columns for the trend estimates
u̇ correspond to the vector of time differences ts − tref . This means that out-
liers in the parameters are ignored for the predictions, and trends are linearly
extrapolated.

As an example, it follows from equation (6.3) for the prediction of a param-
eter u that:

ûS+1 =

{

ûref (if u static)

ûref + (tS+1 − tref)ˆ̇u (if u dynamic).
(6.4)
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Correspondingly, the variance of the predicted parameter ûS+1 is:

σ2
u,S+1 =

{

σ2
u,ref (if u static)

σ2
u,ref + (tS+1 − tref)

2σ2
u̇ (if u dynamic).

(6.5)

If no trend has been detected for the parameter u, the estimates ûS+1 and their
variances σ2

u,S+1 are static, i.e. independent of the moment of prediction tS+1.

If the value of a parameter contains a trend, the variances σ2
u,S+1 increase in

time.

The P × U coefficient matrix AS+1 describes the relation between the pre-
dicted representations in the parameter domain and the depth domain. The
elements of AS+1 correspond to the elements in the first U columns of A. The
predicted representation in the depth domain follows from the predicted repre-
sentation in the parameter domain according to:

m̂S+1 = AS+1ûS+1, Cm,S+1 = AS+1Cu,S+1A
T
S+1. (6.6)

The extended representation in the depth domain contains the representations
for all the surveys s, and the predicted representation. It is denoted m̂+ and C+

m

for its P (S + 1)× 1 characterization vector and P (S+ 1)×P (S + 1) covariance
matrix.

Depth reduction

The crucial property of a bathymetric representation for maritime navigation is
the shallowest depth that is expected. Depth is already reduced for the water
level above the reference low-water surface, during the processing of the survey.
We reduce it further to create a safe margin for navigation in areas that are
potentially dynamic. For this reduction, we use the extended representation in
the depth domain. We assume a Gaussian distribution for the deviations, as
described by the dispersion, and specify a 97.5% confidence level to the require-
ment that the depth should not be shallower than given by the representation.

This enables us to compute a depth-reduced characterization:

m̂+
97.5% = m̂+ − 1.96

√

diag(C+
m). (6.7)

The operator diag() converts the main diagonal of the covariance matrix into
a column vector of variances. We regard it unlikely that the true depth d is
shallower than its element in m̂+

97.5%, as depicted by the upper confidence limit

in Figure 6.2b. Therefore, the vector m̂+
97.5% contains the shallowest likely depth

values. It represents the S + 1 shallowest likely depth surfaces m̂97.5%(x, y).
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6.3.4 Two indicators for rates of change

The creation of a bias in the shallow direction

For a static sea floor, the estimated depth values and uncertainties are constant.
Consequently, the shallowest likely depth values are constant, and therefore their
rates of change are zero.

For a dynamic sea floor, the predicted depth values m̂S+1 are likely to have
the largest uncertainty. This means for the rates that the addition of the pre-
diction creates a bias towards the shallow direction, shown in Figure 6.3. The
less frequent a resurvey is done, the larger the time span of the prediction be-
comes. Large predictive time spans relative to the size of a trend result in a
larger positive bias of the shoaling rate. This makes a rate a valuable indicator
for the necessity to change the resurvey frequency of an area, in comparison to
other areas.

The shallowest likely depth rate

For a mariner, it is not important to know where exactly the shallowest likely
depth is located. Instead, it is important to know what the overall shallowest

likely depth is of the whole area, and how this depth evolves in time. Therefore,
we select the minimum over the P depth values in subvector m̂+

97.5%,s
per survey

s.
We use these S + 1 overall shallowest likely depth values for a least-squares

estimation of their rate of change in a linear regression analysis, using the vari-
ances of the corresponding depth values m̂+

p,s as weights. The result is the
shallowest likely depth rate (SLDR), depicted in Figure 6.4. Because the vari-
ances of the depth values are used for the estimation of the SLDR, a variance
is associated with it, describing its uncertainty. Also, we calculate a correlation
coefficient ρ(S) to express the deviations of the shallowest likely depth values
from the estimated linear rate.

The maximum estimated shoaling rate

To decide whether a resurvey is necessary, the shallowest likely depth in an area
alone is not sufficient. In addition, the shoaling rate at any point p within the
area is necessary information. The decision if a shallower depth is relevant does
not only depend on its position on top of or away from a sand wave crest, but
also on the chart scale. The SLDR does not detect a migration of the shallowest
likely depth, which is important information for the update of detailed charts.
Therefore, we estimate a rate of change at each grid node, using the S+1 depth
values in subvector m̂+

97.5%,p.
Again, we perform least-squares estimations of the rates of change, by cal-

culating a linear regression per grid node with the variances as weights. We
regard it unlikely that the true shoaling rate at any position within the area
is larger than the maximum estimated shoaling rate (MESR) of the shallowest
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Figure 6.3: Creation of a bias in a rate of change of the shallowest likely depth, by
adding a prediction (white circle) to the survey moments (black circles): (a) depth de-
crease, two year resurvey frequency; (b) depth decrease, four year resurvey frequency;
(c) depth increase, two year resurvey frequency; (d) depth increase, four year resurvey
frequency.

likely depth values for the 97.5% confidence level at the grid nodes p = 1, · · · , P .
The MESR is also depicted in Figure 6.4. Because the variances of the depth
values are used for the estimation of the MESR, a variance is associated with
it, describing its uncertainty. Also, we calculate a correlation coefficient ρ(M) to
express the deviations of the shallowest likely depth values from the estimated
linear rate.

6.3.5 Two indicators for the risk of missed dynamics

Introduction

Deformation analysis is able to detect smaller dynamics for less irregular sand
waves, as those sand waves are represented better by the estimated parameters.
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Figure 6.4: The calculation of the SLDR and MESR from the shallowest likely depth
values of two surveys, measured a year apart. The SLDR is based on the overall
shallowest likely depth values of each survey, indicated by the larger black circles,
while the MESR is the maximum of the rates of the shallowest likely depth values at
the grid nodes.

In that case, the residuals are smaller, resulting in smaller detectable spatial and
dynamic parameters. It also results in smaller variations between the parameter
estimates and in parameter existence between the areas. A quantification of the
irregularity of sand waves would therefore be a valuable predictor for the per-
formance of our implementation of deformation analysis. In the determination
of sand wave irregularity, it is helpful to distinguish between irregularities that
are caused by the shape of the pattern in x-direction and irregularities caused
by the continuation of the pattern in y-direction. We term the first type wave

irregularity and the second type crest irregularity. We define one-dimensional
sand wave irregularity as the difference with the estimated sinusoidal wave in
the direction across the crest. This difference is given by a variable for the
size of the morphological residuals, as explained in more detail below. Two-
dimensional irregularity also contains the variation of the sand wave pattern in
the direction along the crest.

Two types of wave irregularity are distinguished: horizontal wave asymme-

try (also lee-stoss asymmetry and skewness) and vertical wave asymmetry (also
crest-trough asymmetry and peakedness) of the sand wave pattern. Horizon-
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Figure 6.5: Wave irregularity shown by depth values in an (x,z) coordinate frame
(left) and crest irregularity shown by crest positions in an (x,y) coordinate frame
(right). The graphs on the left show: (a) wave symmetry; (c) horizontal asymmetry
(skewness); and (e) vertical asymmetry (peakedness) of the crests. The graphs on the
right show: (b) shifting crest segments (d) finite-length crests; and (f) bifurcations. In
the graphs (c) and (e), the original symmetrical sand wave is shown dotted.

tal asymmetry is explained by residual currents or by tidal asymmetry [Be-
sio et al., 2008; Németh et al., 2007], and indicates migration of the pattern
[Knaapen, 2005]. Crest irregularities include shifting crest segments, bifurca-
tions and finite-length crests. They could be explained by differences in migra-
tion rate between parts of the pattern, e.g. as a result of differences in depth
(Chapter 4). Examples of these irregularities are given in Figure 6.5.

A first distinction between regular and irregular sand waves is made using
the overall test quotient. To enable a comparison between areas, we subse-
quently quantify the degree of irregularity, for which we use the morphological
variance. Finally, the effect of irregularity on the minimal detectable dynamics
is illustrated. The minimal detectable dynamics are necessary to interpret the
results, used to adapt the resurvey policy.
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Regular versus irregular sand wave patterns

The sinusoidal sand wave extension of step 1 in the deformation analysis proce-
dure (Chapter 3) represents a perfectly regular sand wave. This step selects the
required spatial parameters by adding extensions to the morphological charac-
terization. The differences between the characterization and the measurements
are the estimated residuals, in vector r̂. In this first step, the overall test quo-
tient q(o,m) represents the size of the square of the estimated residuals in relation
to the measurement and interpolation uncertainty, which is described by covari-
ance matrix Cd.

For the estimation of N morphological parameters from M measured depth
values, the overall test quotient q(o) is given as (Chapter 3):

q(o) = r̂TC−1
d r̂/(M −N). (6.8)

The division by the so-called redundancy M −N averages the estimated resid-
uals. Therefore, the overall test quotient expresses how much of the differences
between the measured pattern and the best approximation by a sinusoidal wave
could be due to the measurement and interpolation error e, and how much of
that difference remains to be explained as sand wave irregularity.

An area for which the overall test quotient q(o,m) ≤ 1 is called regular:
all residual variation can be explained by the measurement and interpolation
uncertainty. If q(o,m) > 1, it is called irregular, because a part of the residual
variation has to be explained by morphological deviations from the sinusoidal
sand wave characterization.

The degree of irregularity of a pattern

The initial covariance matrix of step 1 only contains values for the measurement

and interpolation errors, and is denoted C
(e)
d . After the Least-Squares Vari-

ance Component Estimation (LSVCE) [Teunissen and Amiri-Simkooei, 2008],
the covariance matrix also contains morphological covariance components. The

additional components are given in covariance matrix C
(m)
d . For details, see

Chapter 3. The covariance matrix at the end of step 1 is therefore

C
(em)
d = C

(e)
d + C

(m)
d . (6.9)

In the LSVCE procedure, we divide each of the two contributing covariance ma-

trices into a matrix that only contains the variances C
(v)
d on its main diagonal,

and a matrix C
(c)
d that only contains covariances, and therefore has zeros on its

main diagonal. Further, the presence of small-scale morphological variations,
like mega-ripples, possibly differs per survey, due to e.g. extreme meteorological
events, and consequently we need to make a distinction between the morpho-
logical components per survey as well, denoted Cd,k, for k = 1, · · · , S. In such
a matrix, the elements for all other surveys are set to zero. For computational
reasons, it is attractive to combine the estimation of the covariance functions
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of the the error contribution and the morphological contribution into one co-
variance component per survey. The resulting expression for the addition of
K = 2S components is (Chapter 3):

C
(em)
d = C

(e,v)
d +

S
∑

k=1

C
(m,v)
d,k +

S
∑

k=1

C
(em,c)
d,k . (6.10)

The covariance components are estimated using the fit of a positive-definite
function through empirical auto-covariance values (Chapter 2). The variance

components are estimated by the estimation of variance factors σ̂(m)2
s from the

residuals, using a least-squares procedure [Teunissen and Amiri-Simkooei, 2008].
Using a P × P identity matrix IP , we define the morphological variance com-
ponent according to:

C
(m,v)
d,s = σ̂(m)2

s IP , (6.11)

where the P×P matrices C
(m,v)
d,s contain the non-zero elements of theM×M ma-

trices C
(m,v)
d,k on their main diagonal. The morphological variance components

resulting from the one-dimensional analyses give us the wave irregularity, and
the two-dimensional morphological variance component includes the influence
of both wave and crest irregularity.

The effect of irregularity on the detection of dynamics

To quantify the dynamics that can still be found in the presence of a certain
irregularity, we calculate the size of dynamics that are minimal detectable, as
a function of the morphological variance. Minimal Detectable Biases (MDB-s)
are calculated as (Chapter 3):

|va| =

√

λa

bT
a C−1

d (Cd − Cm)C−1
d ba

. (6.12)

The covariance matrix Cm of the characterization m̂ in the depth domain was
defined in equation (6.1), and relates to the covariance matrix Cd as:

Cm = A(ATC−1
d A)−1AT. (6.13)

The noncentrality parameter λa depends on the chosen level of significance α
of the test, the definition of the extension (via its number of degrees of freedom
Q), and the power γ of the test: λ = λ(α,Q, γ). An extension is defined as
Bava, in which the M ×Q matrix Ba contains the coefficients, and the Q× 1
vector va the parameters of the tested extension a. In the case of an extension
with one degree of freedom, Q = 1, the matrix Ba reduces to an M × 1 vector
ba, and the vector va to a single parameter va.

Analogously to Chapter 4, we use a power γ of 50%, to obtain the dynamics
that are as often detected as they are not. We also use a power of 95%, to
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compare the MDB-s to depth uncertainty at a 95% confidence interval. The
levels of significance for a trend and an outlier are defined in Chapter 4 as
7% and 5%, respectively. The power is the probability of correctly detecting
dynamics, and the level of significance is the probability of incorrectly accepting
an extension for a certain type of dynamics.

We set the M × N matrix of coefficients A according to a characterization
in step 1 with sloping and sand wave parameters. In step 2 this means an initial
static situation of N=5 parameters for a two-dimensional grid analysis, and
N=4 for a one-dimensional grid line analysis. The vector ba is consecutively
modeled for types of dynamics a of a single parameter: a trend in depth, an
outlier in depth for one of the surveys, a trend in amplitude factor, and an
outlier in amplitude factor.

Now, let us assume that we are able to measure the sea floor with a constant
variance of σ(e)2, at every position we need, without correlations. In that case,
the covariance matrix of measurement and interpolation errors is σ(e)2IM . If,
in addition, the morphological variance is constant over time, and the morpho-
logical residuals are spatially uncorrelated, the morphological covariance matrix
is defined as σ̂(m)2IM , as in equation (6.11). In that case, the covariance ma-

trix C
(em)
d reduces to σ̂(em)2IM , see equation (6.9), where we define σ̂(em)2 as

σ(e)2 + σ̂(m)2.

As a consequence of these simplifications, we find a relation between the
MDB and the estimated morphological variance, for dynamics of each of the
four types a:

|va| =

√

λaσ̂
(em)2

bT
a (IM − A(ATA)−1AT)ba

. (6.14)

Larger dynamics, or biases, can be detected with a higher probability than γ,
and smaller biases with a smaller probability. Even a very small bias can be
found, with a small probability, but a very large bias will remain undetected
with a certain small probability as well.

Examples of the values of the dynamics that are minimal detectable are given
in Table 6.1. The coefficient matrix A is specified using the following details:
for the one-dimensional MDB-s, a grid line of twenty nodes is defined, and for
the two-dimensional MDB-s, the grid has a size of twenty times twenty nodes;
the grid spacing is 50 m; six surveys in ten year are done; a sinusoidal sand wave
with a wavelength of 750 m is present; there are no other sea floor dynamics
than the single type that is specified. The constant error variance σ(e)2 is set at
0.1 m2.

Because of the absence of covariances for the MDB calculation, we should
expect that these MDB-s are not detected with the specified power in real-
ity. Nevertheless, Table 6.1 illustrates that trends are easily detectable, also
for larger morphological variances and the one-dimensional grid line analysis.
Table 6.1 also illustrates that outlying values are much harder to detect, in the
cases of a relatively large morphological variance. Also, it is clear that it is
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Table 6.1: Values of one-dimensional and two-dimensional MDB-s for the detection
of dynamics in step 2. The MDB-s are given for levels of significance α of 7% for trends
and 5% for outliers, at a power γ of 50% and 95%, and a defined morphological variance
σ(m)2 of 0.1, 1, and 10 m2. It is assumed that there are uncorrelated measurement
and interpolation errors with a variance σ(e)2 of 0.1 m2. For the one-dimensional
MDB-s, a grid line has

√
P=20 nodes, and for the two-dimensional MDB-s, the grid

has P=20×20 nodes. The grid spacing is 50 m, and S=6 surveys in ten year are
done. (The resurvey period is T=2 year.) The results are valid for a sand wave with
a dominant wavelength L(d) of 750 m, and no other sea floor dynamics than specified.
The MDB-s are given for a new survey, two years after the sixth.

type of dynamics σ(m)2 MDB (1D) MDB (2D)
[m2] γ=50%; 95% γ=50%; 95%

linear trend in depth 0.1 0.03; 0.06 0.007; 0.013 m/2yr
linear trend in depth 1 0.10; 0.19 0.02; 0.04 m/2yr
linear trend in depth 10 0.31; 0.59 0.07; 0.13 m/2yr
outlying depth 0.1 0.21; 0.39 0.05; 0.09 m
outlying depth 1 0.50; 0.92 0.11; 0.21 m
outlying depth 10 1.53; 2.80 0.34; 0.63 m
linear trend in amplitude 0.1 0.04; 0.08 0.009; 0.017 m/2yr
linear trend in amplitude 1 0.13; 0.25 0.03; 0.06 m/2yr
linear trend in amplitude 10 0.40; 0.77 0.09; 0.17 m/2yr
outlying amplitude 0.1 0.28; 0.52 0.06; 0.12 m
outlying amplitude 1 0.66; 1.21 0.15; 0.27 m
outlying amplitude 10 1.99; 3.66 0.45; 0.82 m

about twice as hard to detect dynamics with a power of 95% than with a power
of 50%.

As Table 6.1 already illustrates, the outlying sand wave amplitude is the
hardest type of dynamics to detect. Because we hardly found any amplitude
growth in the studied regions (Chapters 4 and 5), and migration does not affect
the overall shallowest likely depth values, we instead use the MDB-s for a depth
outlier as indicators.

It is also clear from Table 6.1 that more dynamics can be detected by a two-
dimensional grid analysis than by a one-dimensional grid line analysis, provided
that the specified dynamics are constant over the grid. As shown in Chapter 5,
for some subareas dynamics are found for several grid lines, while the grid anal-
ysis does not show dynamics. Because bed level dynamics are in practice not
always constant over a grid, but also often do not happen in specific directions
only, we use both the one-dimensional and the two-dimensional MDB-s as in-
dicators. A power γ of 95% is chosen, to allow for a comparison with the 95%
confidence interval for depth uncertainty, as specified by S44, for the appropriate
order and at the observed bed level [International Hydrographic Organization,
2008a].
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6.3.6 Combination of the four indicators

In this Section, we describe how we combine the four indicators introduced pre-
viously: SLDR, MESR, 1D MDB, and 2D MDB. The two indicators SLDR and
MESR work well in combination: in the calculation of the SLDR, spatial differ-
ences are eliminated first, and the rate of change for a grid is estimated next.
In contrast, the calculation of the MESR first estimates rates of change at each
node, and space is eliminated next. These properties cause sand wave growth
to dominate the SLDR, and sand wave migration to dominate the MESR. The
MDB indicators are a useful addition, because they provide an extra warning
against dynamics that are potentially missed by the first two indicators.

An indicator is termed large if it exceeds a critical value. For the SLDR
and the MESR, the critical values are their uncertainties at a 95% level. For
the MDB-s, we use vertical uncertainties as stated by the IHO S44 standards,
which are depth-dependent.

We use the following priority scheme.

1. Assign first priority to areas that have large positive SLDR-s, because the
minimum depth values decrease for those areas.

2. Assign second priority to the other areas that have large positive MESR-
s, because there are locations within those areas where the depth values
decrease.

3. Assign third priority to the other areas that have large two-dimensional
MDB-s, because large-scale dynamics of significant size could be missed
in those areas.

4. Assign fourth priority to the other areas that have large one-dimensional
MDB-s, because small-scale dynamics of significant size could be missed
in those areas.

5. Assign fifth priority to all other areas.

6.4 Results: indicator values for the Southern North Sea

6.4.1 The two rates of change

The morphodynamics of five regions in the Southern North Sea have been esti-
mated using deformation analysis. Results are given in Chapter 4 for an area
West of Rotterdam, and in Chapter 5 for four other regions. The regions are
shown in Figure 6.6, and the areas per region are listed in Table 6.2. Areas are
subdivided into subareas, for each of which a grid is available.

An overview of the resulting indicators SLDR and MESR is given in Ta-
ble 6.3. The SLDR values are all close to zero, meaning that the shallowest
likely depth values per subarea hardly change. Exceptions are the SLDR val-
ues for the SBES surveys of the Noordhinder Junction, as it indicates that the
shallowest likely depth per subarea is increasing. This confirms the results for
those surveys (Chapter 5). The flat, shallow area in the TE-TSS and the three
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Figure 6.6: Overview of analyzed regions on the Belgian and Netherlands Continental
Shelf.

Table 6.2: Areas per region, including codes for areas and regions used in the following
Tables.

region areas
Selected Track (ST) Critical areas A, including Twin (ST1);

Critical areas B, E, F, G, H, I, J (ST2);
Critical areas C, D, K (ST3);
Long Stay anchorage (ST4)

Noordhinder (NH) Noordhinder Junction (NH1);
Short Stay anchorage (NH2);
Eurogeul Approach (NH3)

West of Rotterdam (WR) Maas West anchorage (WR1)
West of IJmuiden (WIJ) IJgeul Approach (WIJ1);

IJgeul Approach anchorage (WIJ2)
North of Terschelling (NT) shallow part of TE-TSS (NT1)



186 Chapter 6. Application to the resurvey policy

Table 6.3: Averages per area for the SLDR and MESR values [m/yr], followed by
their uncertainties expressed as 95% confidence limits, and correlation coefficients ρ.
Positive rates mean the sea floor becomes shallower. Static areas have an average
rate of exactly 0, and small rates are denoted 0.00. The two-letter region codes are
given in Table 6.2. The areas Maas west anchorage (WR1), IJgeul Approach and
IJgeul Approach anchorage (WIJ1-2) have MESR values that are higher than their
95% confidence limits, and are therefore marked with (!).

area (# subareas) SLDR ρ(S) MESR ρ(M)

ST1, 1991-1999 (25) 0 ± 0.05 1 0.00 ± 0.04 0.93
ST1, 2000-2002 (25) 0 ± 0.16 1 0 ± 0.19 1
ST1, 2003-2006 (25) 0 ± 0.10 1 0 ± 0.13 1
ST2 (20) 0 ± 0.11 1 0 ± 0.19 1
ST3 (11) 0 ± 0.08 1 0 ± 0.10 1
ST4 (32) 0 ± 0.08 1 0 ± 0.11 1
NH1, SBES (72) −0.12± 0.15 0.93 −0.04 ± 0.13 0.96
NH1, MBES (72) 0.00 ± 0.16 0.92 0.00 ± 0.15 0.89
NH2 (24) 0 ± 0.09 1 0 ± 0.12 1
NH3 (92) 0 ± 0.09 1 0 ± 0.14 1
WR1 (18) 0.02 ± 0.04 0.28 0.12 ± 0.04 0.99 (!)
WIJ1-2 (120) 0.00 ± 0.03 0.57 0.05 ± 0.03 0.52 (!)
NT1 (14) 0.00 ± 0.01 0.15 0.00 ± 0.01 0.26

areas that show migration (Maas West, IJgeul Approach, and IJgeul Approach
anchorage) have a low correlation ρ(S) between time and the overall shallowest
likely depth per subarea. Apparently, their overall shallowest likely depth values
change independent of time.

The MESR values are also close to zero, except for the three areas that
show migration. The migration makes the shallowest likely depth values at
one side of the sand waves decrease. The correlation ρ(M) between time and
the shallowest likely depth is large, except for the flat, shallow area in the the
TE-TSS and the two areas in the region West of IJmuiden. For those two
areas (IJgeul Approach and IJgeul Approach anchorage), sand wave migration
is detected, which is neither correlated with depth nor with sand wave shape.
(See Chapter 5.)

For the area Maas West, in the region West of Rotterdam, migration is
detected that correlates with both depth and sand wave shape. (See Chapter 4.)
For this area, we find a large correlation ρ(M) between time and the shallowest
likely depth for the nodes where the MESR is found, but a low correlation ρ(S)

between time and the overall shallowest likely depth values. This difference
between the migrating areas Maas West and the two IJgeul Approach areas is
probably due to the less structured migration of the latter areas, as indicated
by the differences in their correlations with depth and sand wave shape.
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Table 6.4: Overall spatial test quotients q̄(o,m) [-] and survey-averaged estimated

morphological variance ¯̂σ
(m)2

[m2] per area, averaged over all subareas. The area
codes are given in Table 6.2. To compare these results, the used number of SBES
surveys S↓ and the used number of MBES surveys S� are given as well. Both the
one-dimensional grid line results and the two-dimensional grid results are given. The
shallow part of the TE-TSS (NT1), marked with (*), has a one-dimensional and a
two-dimensional overall test quotient larger than 1 for one subarea only, and therefore
only one survey-averaged morphological variance for the one-dimensional analysis, and
one for the two-dimensional analysis.

area (# subareas) q̄(o,m) ¯̂σ
(m)2

S↓ S�

1D 2D 1D 2D
ST1, 1991-1999 (25) 3.49 4.08 0.94 0.75 8 0
ST1, 2000-2002 (25) 6.15 7.49 1.03 0.91 5 2
ST1, 2003-2006 (25) 8.85 11.01 1.15 1.12 3 4
ST2 (20) 5.66 7.73 3.34 3.28 6 0
ST3 (11) 5.50 6.19 2.10 1.79 6 0
ST4 (32) 9.43 13.18 1.81 1.86 2 1
NH1, SBES (72) 3.26 4.92 1.35 1.33 4 0
NH1, MBES (72) 21.55 31.80 2.34 3.23 0 6
NH2 (24) 22.36 30.36 2.33 2.94 1 5
NH3 (92) 15.13 21.91 1.56 1.92 0 7
WR1 (18) 4.47 6.10 0.47 0.49 4 1
WIJ1-2 (120) 6.07 9.82 0.48 0.35 4 2
NT1 (14) 0.30 0.28 0.011 0.005 3 1 (*)

6.4.2 The two regularity parameters

The overall test quotient

An overview of the values of the overall test quotients is given in Table 6.4. The
table illustrates that, besides the area without sand waves North of Terschelling,
few overall test quotients are smaller than one, and therefore almost all subareas
of the other areas are classified as irregular.

It is also clear from Table 6.4 that the overall test quotients strongly depend
on the type of surveys: MBES surveys result in higher values than SBES surveys.
The Kriging uncertainty of the SBES surveys makes their variances larger, and
thereby the test quotients smaller, as they give the size of the residuals relative
to the variances and covariances of the error model. Therefore, we only conclude
that all subareas are irregular, but we cannot compare regions in terms of their
degree of irregularity.

A third observation is that the two-dimensional overall test quotients are
larger than the one-dimensional overall test quotients. This difference in value
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is caused by the difference in redundancy M −N , also see equation (6.8). The
two-dimensional analysis uses the same number of depth values M to estimate
fewer parameters N . This means that the estimated residuals r̂ are larger, and
thereby the overall test quotients q(o,m) are larger as well. Only in a few cases
the increase in size of the residuals is so small that the increase in redundancy
M −N dominates equation (6.8), and the two-dimensional overall test value is
smaller. The shallow part of the TE-TSS, without a sand wave pattern, is an
example of such a case.

The morphological variance

We see that the type of echo-sounder also influences the morphological variances
¯̂σ

(m)2
, most notably for the Noordhinder Junction. A part of the morphological

variation will be incorrectly accounted for by the error variances and covariances.
An error description that allows for larger residuals is able to account for more
morphological variation as well.

However, another effect now dominates, which becomes clear by comparing
the morphological variances of the short wavelength Critical area (A: 150 to 300
m) with those of the intermediate wavelength Critical areas (C, D and K: 200 to
400 m) and those of the long wavelength Critical areas (B, E, F, G, H, I, J: 450
to 900 m). Larger wavelengths apparently allow for larger deviations from a sine
function. This difference is visible in the values for both the one-dimensional
and the two-dimensional values, which confirms that this effect is caused by
wave irregularity (deviation from a sine by peakedness or skewness in the x-
direction), not by crest irregularity (sand wave pattern changes in amplitude or
position along the y-direction).

The one-dimensional morphological variances can be both larger or smaller
than the two-dimensional values. One effect has already been mentioned for
the overall test quotients: the estimated residuals r̂ are larger for the two-
dimensional situation, which also means larger estimates for morphological vari-
ance. Another effect is the acceptance of spatial extensions to the characteri-
zation. The larger redundancy in the two-dimensional analysis gives larger test
quotients q

a
for the alternative extensions a, which means that it is more likely

that an extension is accepted. This implies that the estimated residuals r̂ are
smaller for the two-dimensional situation.

It depends on the crest irregularity of the area which effect dominates.
For a relatively small degree of irregularity, the extra flexibility of the one-
dimensional analysis does not approximate the morphology much better than
the two-dimensional analysis, the estimated residuals are not much smaller. If
the larger redundancy of the two-dimensional analysis is the cause of the ac-
ceptance of a spatial extension that was not accepted for the one-dimensional
analysis, the two- dimensional residuals are smaller, and the size of the added
morphological variance as well. For a relatively large degree of irregularity, on
the other hand, the one-dimensional analysis is able to approximate the pat-
tern much better because it is more flexible. The two-dimensional residuals are
larger, and the size of the added morphological variance as well.
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For example, the areas in the region West of IJmuiden have a relatively large
one-dimensional morphological variance, indicating that the sand waves have a
low crest irregularity. The areas in the Noordhinder region have a larger two-
dimensional morphological variance, indicating a large crest irregularity. An
exception are the SBES surveys of the Noordhinder Junction. The track direc-
tion usually corresponds to the x-direction of the pattern, and the interpolation
procedure therefore artificially creates regular structures the y-direction of the
crest. This decreases the two-dimensional morphological variance to the size of
the one-dimensional morphological variance.

6.4.3 The two minimal detectable biases

Table 6.5 shows the minimal detectable biases for a depth outlier during the
next survey, with a power γ of 95%. With this Table, we can now conclude
from the two-dimensional MDB-s that there is no large risk of missing large-
scale dynamics of a size of S44 order 1 for depth uncertainty. However, as we
can conclude from the one-dimensional MDB-s, there is a higher risk that small-
scale dynamics of that size will be missed for all regions, except for the region
North of Terschelling.

The MDB-s are especially large for the regions Selected Track and Noord-
hinder, because the morphological variances of those regions are also large (Ta-
ble 6.5), and in spite of their larger S44 critical values due to their deeper bed
levels. The regions West of Rotterdam and West of IJmuiden already had a
higher recommended priority, because of their MESR values. Now, we also rec-
ommend to give the regions Selected Track and Noordhinder priority over the
region North of Terschelling, as indicated by a (!) in Table 6.5.

6.5 Results: suggested improvements

to the resurvey policy

All analyzed areas under the responsibility of the Netherlands Hydrographic
Service have the same resurvey category 1, with a frequency of once every two
years, see Table 6.6. Although the analyzed areas in the region Noordhinder fall
under the responsibility of Rijkswaterstaat North Sea, there are also category 1
areas of the Netherlands Hydrographic Service in this region. The two regions
that have the largest dynamics with respect to the resurvey frequency are West
of Rotterdam and West of IJmuiden. (See the MESR values in Table 6.3.) We
suggest to change the current resurvey policy by assigning areas in those two
regions a higher resurvey frequency than areas for which the other four factors
are equal, but that are located in another region.

Also, the absence of any large indicator values for the region North of Ter-
schelling suggest that the high resurvey frequency of the shallow part of the TSS
could not be justified, unless other factors require so. The recommendations and
the reasons for them are given per priority in Table 6.7.
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Table 6.5: Minimal detectable biases [m] for a depth outlier during the next survey,
with a power γ of 95%. The area codes are given in Table 6.2. All listed details per

area are averages over the subareas: measurement and interpolation variance ¯̂σ
(v)2

[m2]; number of grid nodes
√
P̄ per grid line, assuming square grids; and number of

surveys S̄. The morphological variance ¯̂σ
(m)2

[m2] is taken from Table 6.4. The MDB-s
are compared to the values for uncertainty of depth error 1.96σ(e) [m] of S44, order
1, at a 95% confidence level [International Hydrographic Organization, 2008a]. The
S44 uncertainty values are calculated using bed level d(b) [m]. The areas that were
not given a higher priority in Table 6.3, and have a higher one-dimensional MDB than
1.96σ(e) of S44, order 1, are marked with (!).

area area details MDB S44, order 1

(# subareas) ¯̂σ
(v)2 √

P̄ S̄ d̄
(b)

1D 2D 1.96σ(e)

ST1, 1991-1999 (25) 0.40 22 6 34.5 0.96 0.19 0.67 (!)
ST1, 2000-2002 (25) 0.41 22 5 34.5 1.01 0.21 0.67 (!)
ST1, 2003-2006 (25) 0.18 22 5 34.6 0.97 0.20 0.67 (!)
ST2 (20) 1.05 18 6 39.4 1.92 0.45 0.72 (!)
ST3 (11) 0.49 20 6 36.0 1.40 0.29 0.68 (!)
ST4 (32) 0.14 25 3 41.2 1.16 0.24 0.73 (!)
NH1, SBES (72) 0.67 23 4 37.1 1.19 0.25 0.69 (!)
NH1, MBES (72) 0.12 23 6 37.6 1.27 0.31 0.70 (!)
NH2 (24) 0.12 26 6 36.0 1.19 0.26 0.68 (!)
NH3 (92) 0.11 20 6 34.2 1.12 0.27 0.67 (!)
WR1 (18) 0.08 25 5 20.2 0.59 0.12 0.56
WIJ1-2 (120) 0.11 22 6 25.4 0.64 0.12 0.60
NT1 (14) 0.08 16 4 19.6 0.30 0.08 0.56

Table 6.6: Existing situation of resurvey categories per region. The geographic distri-
bution of the categories over the BNLCS and the corresponding resurvey frequencies
are shown in Figure 6.1.

region highest current recommended
resurvey category new priority

West of Rotterdam (WR) category 1 2
West of IJmuiden (WIJ) category 1 2
Selected Track (ST) category 1 4
Noordhinder (NH) category 1 4
North of Terschelling (NT) category 1 5
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Table 6.7: Recommended new situation: differing recommended priorities per region.

recommended region reason
new priority

1 - large SLDR
2 West of Rotterdam (WR),

West of IJmuiden (WIJ) large MESR
3 - large 2D MDB
4 Selected Track (ST),

Noordhinder (NH) large 1D MDB
5 North of Terschelling (NT) no large indicators

6.6 Discussion

6.6.1 Shallowest likely depth as a hydrographic concept

Our concept of the shallowest likely depth is algorithmic, just like the concept
of the navigation surface [Smith, 2003; Smith et al., 2002], but the way it deals
with small-scale morphology is different. Instead of defocusing isobaths around
the shallowest values, we add the residual morphology to the uncertainty of the
schematic characterization, and apply a depth reduction by creating a full grid
of shallowest likely depth values, at a confidence level that is set as considered
necessary. From such a grid, it should be possible to draw non-shoal biased
isobaths that have a constant confidence level. The automatic generation of
unbiased isobaths is more straightforward than the application of a defocusing
algorithm, even if a scale-dependent generalization is necessary.

In a cleaned MBES survey, i.e. after the removal of gross errors and objects,
the extreme values are often generated by the least accurate outer beams of
the echo sounder swath. In that case, classical shoal biasing selects those least
accurate values for chart production. An advantage of our concept is that it
does not rely on the shallowest values, but uses a surface m̂97.5%(x, y) that is
estimated from all depth values and that has a specified confidence level. This
reduces the importance of an advanced data cleaning procedure.

6.6.2 Irregularity as a morphological concept

The one-dimensional morphological variance components describe wave irregu-
larity, without a distinction between horizontal and vertical asymmetry. Crest
irregularity is included in the values of the two-dimensional morphological vari-
ance components. Crest irregularity is large if the two-dimensional morpho-
logical variance component is large, but its one-dimensional equivalent is not.
Because of the relation between the morphological variance component and the
MDB (equation (6.14) and Table 6.1), the MDB values contain the information
on wave and crest irregularity as well. It is preferable to use the morphological
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variance components though, as they are not connected to a certain type of
dynamics.

Knaapen [2005] found a correlation between the migration rate of sand waves
in the Noordhinder region and shape information like their horizontal asymme-
try. In Chapters 4 and 5, we used the shape-based migration predictor, using
the results of a two-dimensional deformation analysis. The differences between
these results and results based on a one-dimensional deformation analysis are
able to provide insight into the role of crest irregularity.

6.6.3 The four indicators

The presence of four other factors for the resurvey policy (Section 6.1) means
that changes could only be made if the interpretation of observed sea floor dy-
namics (factor 5) is done in combination with the interpretation of data describ-
ing the other factors. Therefore, we make recommendations on morphological
priority only, and leave the formulation of adapted resurvey frequencies outside
the scope of this study.

The two indicators SLDR and MESR give a powerful combination of in-
formation on the shallowest depth in an area and the maximum shoaling rate
in that area. The two MDB-s add indicators on the size of potentially missed
dynamics, ensuring recommendations that are robust, even in case of compli-
cated morphology. This enables resurvey planners to make sound choices in the
assignment and change of resurvey frequencies, leading to safer navigation and
more efficient deployment of survey capacity.

The sand wave pattern in all four sand wave regions is irregular (See the
overall spatial test quotients in Table 6.4.), i.e. the pattern differs from a one-
dimensional sine function that is constant in the direction along the crest. The
two regions with migrating sand waves are less irregular, and the two regions
without migrating sand waves are more irregular (See the morphological vari-
ances in Table 6.4.). Potentially, smaller dynamics are not detected in these
areas. Change of survey frequency of the two more irregular regions, based on
the generally static results of the deformation analyses of those regions, should
therefore be done with care.

6.7 Conclusion

The results of the deformation analysis, applied to bathymetric surveys in the
Southern North Sea, have been interpreted using four indicators. These indi-
cators are the Shallowest Likely Depth Rate (SLDR), the Maximum Estimated
Shoaling Rate (MESR), and the Minimal Detectable Biases (MDB-s) for the
one-dimensional and the two-dimensional analyses. They summarize the esti-
mates for the morphological parameters, and thereby finalize the data reduction
in several steps, starting with a series of survey data. The irregularity of the
analyzed patterns differs, which gives different sizes of dynamics that are de-
tectable.



6.7. Conclusion 193

In the present survey policy, all analyzed areas fall into the category with the
highest resurvey frequency, or fall under the responsibility of Rijkswaterstaat
North Sea. Using the indicators that we developed, the regions of the analyzed
areas are ordered into several categories. The regions West of Rotterdam and
West of IJmuiden should have a higher priority than the regions Selected Track
and Noordhinder, which in turn should have a higher priority than the region
North of Terschelling. (Also see the Tables 6.6 and 6.7. This contributes to the
efficiency of the survey efforts that the Netherlands Hydrographic Office makes
in the regions of the analyzed areas, making more time available to survey other
areas. This in turn aids safe navigation in the Southern North Sea.

The approach to improve the resurvey policy by the analysis of a series of
data is possible due to the storage of past surveys at a high resolution. The
resulting recommendations for the survey plan are of higher detail than recom-
mendations from exploratory surveys or remote sensing techniques. With the
recent improvements in morphological models, these models could also become a
valuable source for adaptations in resurvey frequency, especially in cases where
future human intervention plays a role.
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Chapter 7

Conclusions and recommendations

7.1 Answers to the subquestions

The research question is answered by considering a set of subquestions, posed
in Chapter 1. Each subquestion was dealt with in a separate chapter.

Q1: How can we express a bathymetric survey as a grid of depth values and

their uncertainties, to be used as input for deformation analysis? (Chapter 2)

Interpolation of bathymetric data is often necessary to create a regular grid for
deformation analysis. The interpolation of such data, already affected by hor-
izontal and vertical measurement errors, results in an additional interpolation
error. The application of Universal Kriging calculates a variance for this inter-
polation error, and is suitable for areas with a slope and a sand wave pattern.

Q2: How can deformation analysis estimate sea floor dynamics, using the

appropriate sea floor parameters, based on a time series of bathymetric surveys

expressed as grids of depth values and their uncertainties? (Chapter 3)

The presented deformation analysis procedure for the detection and estimation
of sea floor dynamics was tested by a scenario that is realistic for the South-
ern North Sea: the morphology is based on measured data, and the artificially
introduced morphodynamics are typical examples of dynamics in the Southern
North Sea. The results of the test scenario show that a simple morphological
representation can be used for the analysis of sea floor dynamics, even for the
morphologically complicated area that we presented. The method gives param-
eter estimates for the deformations that include their uncertainties. A charac-
terization that consists of a sloping plane and a sinusoidal wave is sufficient to
analyze dynamics in tidal sand wave areas, including growth and migration of
a sand wave pattern.

The procedure requires the availability of variances per depth value for the
measurement and interpolation uncertainties. Several levels of significance have
to be set carefully. Also, the procedure requires some prior insight into the
characteristics of the area to set the search interval for the wavelength, to choose
the size of the subareas, and to select the number of spatial dimensions of an
analysis.
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Q3: How do estimates of parameters for sand wave pattern dynamics, obtained

by the application of deformation analysis, vary on the scale of such a pattern

for a specific sand wave area in the Southern North Sea? (Chapter 4)

Deformation analysis shows that the tidal sand waves in anchorage area Maas
West have migration rates up to 7.5 m/yr. The migration rate is larger in the
shallower subareas in the Southeast. The migration rate also depends on the
shape of the sand waves. These results confirm known correlations with depth
and sand wave shape, now using the uncertainty of the estimates. The migration
rates are also in agreement with idealized process-based models for tidal sand
waves.

Q4: How do estimates of parameters for the sea floor and its changes, obtained

by the application of deformation analysis, vary over several areas in the

Southern North Sea? (Chapter 5)

The bed level dynamics of the five analyzed regions are limited to several decime-
ters over the past two decades, except for the zero-dimensional results. In this
case, the largest upward trends and outliers are usually due to sand wave mi-
gration. Large dynamics are absent, except for migration of the sand waves
relatively close to the North and South Holland coasts. Migration rates corre-
late with bed level and shape information for only one of those two regions. No
generic conclusions on the impact of human interventions can be drawn, because
sand wave dynamics in the two areas with a maintained depth differ too much
from each other.

Q5: How can the results of the application of deformation analysis be used to

improve the resurvey policy of the Netherlands Hydrographic Service?

(Chapter 6)

The results of the deformation analysis, applied to bathymetric surveys in the
Southern North Sea, have been interpreted using four indicators. These indi-
cators are the Shallowest Likely Depth Rate (SLDR), the Maximum Estimated
Shoaling Rate (MESR), and the Minimal Detectable Biases (MDB-s) for the
one-dimensional and the two-dimensional analyses. They summarize the esti-
mates for the morphological parameters, and thereby finalize the data reduction
in several steps, starting with a series of survey data. The irregularity of the
analyzed patterns differs, which gives different sizes of dynamics that are de-
tectable.

In the present survey policy, all analyzed areas fall either into the category
with the highest resurvey frequency, or under the responsibility of Rijkswater-
staat North Sea. The regions of the analyzed areas are ordered into several
categories, using the indicators. The regions West of Rotterdam and West of
IJmuiden should have a higher priority than the regions Selected track and No-
ordhinder, which in turn should have a higher priority than the region North of
Terschelling.
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7.2 Conclusions on the research question

The research question, posed in Chapter 1, is as follows:

How can deformation analysis use a time series of bathymetric surveys to

estimate sea floor dynamics that may include a tidal sand wave pattern in a

satisfactory way, and how can these results be applied to improve a resurvey

policy?

In this project, an estimation was said to be satisfactory if the method detects
all significant sea floor dynamics, if these dynamics are estimated using as few
parameters as possible, and if the uncertainty associated with these dynamics is
as small as possible. The resurvey policy was said to be improved if all detected
sea floor dynamics could influence the policy, if the risk of missed sea floor
dynamics is accounted for, if sea floor dynamics that have a smaller uncertainty
have a larger influence, and if sea floor dynamics that pose a more severe threat
to navigation have a larger influence.

Universal Kriging of bathymetric surveys results in a series of grids of depth
values and their variances, and is suitable for areas with a slope and a sand
wave pattern. Deformation analysis gives insight into the past behaviour of the
sea floor. This combination of methods even performs well for morphologically
complicated areas, using a characterization that allows for a slope and a sand
wave pattern. This characterization estimates the significant parameters for the
dynamics, including their uncertainties, and it limits both the number of pa-
rameters and the parameter uncertainty, if temporal extensions consisting of a
trend and outlying parameters are tested. A least-squares variance component
estimation is necessary to account for the residual morphology and morphody-
namics.

Large dynamics are absent for the analysed areas in all five studied regions
in the Southern North Sea, except for migration of the sand waves relatively
close to the North and South Holland coasts. Migration rates correlate with
bed level and shape information for only one of those two regions.

A set of four indicators has been set up to summarize the estimates for the
morphological parameters, which completes the data reduction process. Based
on these indicators, we have been able to assign different priorities to five regions
of the resurvey plan that currently all have areas in the highest category. This
contributes to the efficiency of the survey efforts of the Royal Netherlands Navy.

7.3 Recommendations for further research

We recommend that the following topics are studied further:

R1: Improve the estimation procedure by alternative sea floor representations.

Tidal sand wave patterns vary greatly in their degree of irregularity over the
Southern North Sea. Additional spatial and temporal extensions could improve
the representation, which keeps the residual variation small. This reduces the
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additional morphological and temporal uncertainties. This in turn allows for
more accurate estimates, and smaller dynamics that are detectable.

However, only relevant parameters reduce the morphological variance suffi-
ciently to counteract the loss of accuracy of the estimates, due to the decrease in
redundancy. The redundancy is the surplus of the measurements over the num-
ber of parameters, a lower redundancy means a lower number of measurements
per parameter, and therefore a lower accuracy per parameter. The inclusion of
new parameters should therefore be done with caution.

For instance, the detection and estimation of potential along-crest compo-
nents of sand wave migration requires that the method could estimate the crest
length of sand waves. In that case, an additional parameter has to be added
to the sand wave characterization, for position along the crest direction, from
which an along-crest migration rate could be estimated. Sand wave migration
along the wave crests was observed for the Southern North Sea by Van Dijk and
Egberts [2008].

Sand wave asymmetry could be represented by additional parameters, like
the addition of a second sine wave with half the wavelength. If a sand wave
pattern deviates strongly from the shape of a sine wave, a better approach
could be to represent sand waves using a different basic shape, like a triangular
saw tooth pattern. The detection of changes in asymmetry in step 2 of the
method is possible if sand wave asymmetry parameters are available in step 1.

Another example is the study of sand wave behaviour after removing the
pattern partly or fully by dredging. The regeneration of a sand wave pattern
for the Southern North Sea has been studied by Knaapen and Hulscher [2002].
A tidal sand wave pattern might or might not recover, and initial sand wave
growth might be nonlinear. These types of behaviour will now be represented by
a series of outliers. If dredging moments are available beforehand, it makes sense
to design specific alternative hypotheses in step 2 of the method. One could
think of a static situation before dredging and another static situation after,
or a linear trend after the initial static situation. The linear trend potentially
is adapted by outliers for nonlinear behaviour. A prerequisite is the accurate
documentation of dredging moments.

A complication of the estimation of a wavelength using deformation analysis
is that the relation between the observed depth values and wavelength is non-
linear. The optimization procedure that solves this complication allows for a
constant wavelength only, both in time and over a grid or grid line. Crest irreg-
ularity could not be solved by varying the dominant wavelength over the grid
or grid line. Also, it is impossible to detect change in the dominant wavelength
over time. Such a change in wavelength in time could e.g. happen during the
recovery of a pattern after dredging, or due to the change of flow characteristics
after human intervention at sea, like the construction of dams and land recla-
mation. The implementation of a linearized estimation procedure will allow for
the estimation of dominant wavelength as a regular parameter, allowing for its
change in time.
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R2: Explore application to other morphological patterns.

Application of the designed procedure to rhythmic features on other scales and
in other environments is attractive. Deformation analysis procedures already
were implemented by Lindenbergh and Hanssen [2003] for an eolian sand dune
field, and by Lindenbergh [2004] for megaripples at sea. Application to smaller-
scale variations like megaripples and ripples is hindered by the limited positional
accuracy and resolution at sea. Application in a laboratory environment does
not have these disadvantages.

In a fluvial environment, other algorithmic methods already are in use [McEl-
roy et al., 2008; Sieben, 2004] that are deterministic in nature. Although mea-
surement and interpolation uncertainties are smaller for depth measurement in
rivers, the application of a stochastic method like deformation analysis will help
to distinguish between measurement errors and morphological change in such
an environment as well.

Large-scale features like sand banks are usually less dynamic than smaller
scale features. The application of deformation analysis is still attractive for
static features, to detect the dominant wavelength of complicated pattern. It
offers an alternative approach to the spectral analysis of a pattern [Van Dijk
et al., 2008; Smale et al., 2007].

R3: Study spatial correlations of the estimates of the analyzed areas to

surrounding areas.

Classification of areas of equal morphological and physical characteristics en-
ables insight into the spatial extent of the detected dynamics. Morphological
characteristics are the depth, length, amplitude and shape of the rhythmic pat-
terns on the sea floor on various scales. Physical characteristics are the com-
position of the sea floor, tidal flow, and wave climate. If the extent of areas
with equal characteristics is known, careful attempts could be made to spatially
extrapolate the estimates of the analyzed areas.

To improve the efficiency of the survey policy of the Netherlands Hydro-
graphic Service, conclusions on morphodynamics need to be drawn on the scale
of the Southern North Sea, instead of the scale of regions of limited spatial ex-
tent. Morphology has already been studied on this scale, recently by Van der
Veen et al. [2006] and Knaapen [2009]. Morphodynamics on this scale, based
on series of surveys, will be studied in a follow-up project by Deltares [2008].

R4: Study the predictive capacities of the estimates of the analyzed areas.

The approach to improve the resurvey policy by the analysis of a series of data
is possible due to the storage of past surveys at a high resolution. The resulting
recommendations for changes in the survey policy are of higher detail than
recommendations from recent exploratory surveys or remote sensing techniques,
but they are based on linear extrapolations of trends. To get a better insight
into the present and future morphodynamics than by a linear extrapolation, a
coupling with process-based models should be made, especially for areas where



200 Chapter 7. Conclusions and recommendations

the indirect effect of human interventions could pose a threat to navigation
[Van der Veen, 2008; Roos et al., 2008]. Such a coupling has already been
made between the trend analysis method of Wüst [2004] and the process-based
Landau equation for sand wave growth, by Knaapen et al. [2005].

The study of correlations between morphodynamics and sand wave shape
enables the prediction of morphodynamics from a single bathymetric survey, in-
stead of a time series [Knaapen, 2005]. Especially the correlations between wave
irregularity and migration rate, and between crest irregularity and variations in
migration rate deserve attention.

R5: Explore the use of results of deformation analysis in coastal zone

management.

Prudent coastal zone management requires appropriate assessment procedures
for the impact of human interventions into natural systems [Hommes et al.,
2009; Hommes, 2008]. An example of such a procedure in the Netherlands is
the Milieu Effect Rapportage (MER). One could think of large infrastructure
projects like the extension of the Port of Rotterdam, sand mining and dumping,
the development of offshore wind farms, and the extraction of oil and gas from
the continental shelf. Deformation analysis helps the evaluation of the influence
of infrastructure projects in the decades after their realization, and thereby
improves the assessment of future projects.

Unexploded ordnance and mines are abundant in the Southern North Sea,
mostly due to the Second World War. Most of these objects were buried in the
sandy sea bed in time, due to dynamics of the sea floor, like scouring (i.e. sand
removal around objects due to flow) and sand wave migration. Sea floor dynam-
ics could not only cover objects, but also reveal them again after unpredictable
time. Knowledge on sea floor dynamics helps to identify areas of higher risk of
object re-exposure, which is of great value for the safety of mariners, especially
fishermen. Those areas could be added as Additional Military Layers (AML-s)
in geographical information systems for mine counter-measures.

7.4 Implementation

at the Netherlands Hydrographic Service

The method developed in this study should be further implemented into the
survey processing at the office of the Netherlands Hydrographic Service. The
current implementation in MATLAB should be converted into a stand-alone
computer program, which communicates with the bathymetric archiving system.
Recommendations for changes in survey policy could then directly be sent from
the data processing department to the survey planning department, without the
routine intervention of the developers of the method.

It is recommended that the method is applied to other areas of the BNLCS,
once more data becomes available. The results of every newly analysed area
improves the analysis of morphodynamics on the scale of the BNLCS further,
which will be done by Deltares [2008].
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The transition from the recommended resurvey priorities to adapted resurvey
frequencies should be done taking all five factors of Chapter 6 into account.
Changes in resurvey frequency were already made for the Critical areas in the
Selected Track region in 2003, based on earlier results of deformation analysis.
It is now possible to make further changes in resurvey frequency for the five
analysed areas.



202 Chapter 7. Conclusions and recommendations



Bibliography

Amiri-Simkooei, A. R. [2007]. Least-Squares Variance Component Estimation — The-
ory and GPS Applications, PhD thesis, Delft University of Technology, Delft, The
Netherlands. no. 64 in Publications on Geodesy, Netherlands Geodetic Commission,
ISBN: 10-90-804147-5-1 and 13-978-90-804147-5-4.

Amiri-Simkooei, A. R. and Tiberius, C. C. J. M. [2006]. Assessing receiver noise using
GPS short baseline time series, GPS. Sol. 11: 21–35. doi: 10.1007/s10291-006-0026-
8.

Armstrong, M. [1984]. Problems with universal kriging, Math. Geol. 16(1): 101–108.

Baarda, W. [1968]. A testing procedure for use in geodetic networks, number 9 in Pub-
lications on Geodesy, Netherlands Geodetic Commission, Delft, The Netherlands.

Besio, G., Blondeaux, P., Brocchini, M., Hulscher, S. J. M. H., Idier, D., Knaapen,
M. A. F., Németh, A. A., Roos, P. C. and Vittori, G. [2008]. The morphodynamics
of tidal sand waves: a model overview, Coastal Engineering 55: 657–670. doi:
10.1016/j.coastaleng.2007.11.004.

Besio, G., Blondeaux, P., Brocchini, M. and Vittori, G. [2004]. On the modelling of
sand wave migration, J. Geophys. Res. 109(C04108). doi: 10.1029/2002JC001622.

Bottelier, P., Briese, C., Hennis, N., Lindenbergh, R. C. and Pfeifer, N. [2005]. Distin-
guishing features from outliers in automatic kriging-based filtering of MBES data:
a comparative study, in P. Renard, H. Demougeot-Renard and R. Froidevaux (eds),
GeoENV V — Geostatistics for environmental applications, Springer, Berlin, Ger-
many, pp. 403–414.

Bouwmeester, E. and Heemink, A. [1993]. Optimal line spacing in hydrographic survey,
Int. Hydro. Rev. 70(1): 37–48.

Bowyer, J. K. [1992]. Basin changes in Jervis Bay, New South Wales: 1894-1988, Mar.
Geol. 105: 211–224.

Buijsman, M. C. [2007]. Ferry-observed variability of currents and bedforms in the
Marsdiep inlet, PhD thesis, Utrecht University, Utrecht, The Netherlands. ISBN:
978-90-393-4613-6.

Burton, B. W. [1977]. An investigation of a sandwave field at the south western end
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Notation

In the lists of symbols, all uppercase letters are given before lowercase letters.
Within a case-group, roman typefaces are given before italics. The order within
a case-group and a typeface-group is alphabetic, where the numbers are given
after the letters. After the name of the symbol, we refer to the chapters in which
it is explained further.

Roman

Bold
A coefficient matrix (Chapters 2 and 3)
B coefficient matrix of an extension (Chapter 3)
C covariance matrix (Chapters 2 and 3)
F Jacobian matrix of sand wave parameters (Chapter 3),

prediction matrix (Chapter 6)
I identity matrix (Chapter 6)
O zero matrix (Chapter 2)
U parameter matrix (Chapter 2)
W weights matrix (Chapters 2 and 3)
a coefficient vector (Chapter 2)
b coefficient vector of an extension (Chapter 3)
c covariance vector (Chapter 2)
d depth vector (Chapters 2 and 3)
e measurement error vector (Chapters 2 and 3)
f sand wave parameter vector (Chapter 3)
h position difference vector (Chapters 2 and 3)
m morphology vector (Chapter 3)
o zero vector (Chapter 2)
r residuals vector (Chapters 2 and 3)
u parameter vector (Chapters 2 and 3)
v parameter vector of an extension (Chapter 3)
t vector of survey moments (Chapter 3)
w weight vector (Chapter 2)
x vector of a single coordinate (Chapters 2 and 3)
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Regular
D{•} dispersion operator (Chapter 3)
E{•} expectation operator (Chapters 2 and 3)
R field of real numbers (Chapter 2)
A amplitude (Chapter 3), Eddy viscosity (Chapter 4)
F Fisher distribution function (Chapter 3)
G horizontal asymmetry (Chapter 4)
H sand wave height (Chapter 4)
I number of residual components (Chapter 2)
K number of basis functions (Chapter 2),

number of cofactor matrices (Chapter 3)
L wavelength (Chapter 3)
L,M grid size (Chapter 2)
M number of depth measurements (Chapter 3)
N number of grid nodes (Chapter 2),

number of parameters (Chapter 3)
N normal or Gaussian function (Chapter 2)
P number of positions (Chapters 2 and 3)
Q number of dynamic parameters of an extension:

“degrees of freedom” (Chapter 3)
R a representation (Chapter 3)
S number of surveys (Chapter 3), slip parameter (Chapter 4)
T test statistic (Chapter 3)
U number of parameters of the original representation

(Chapter 3)
V number of dynamic parameters (Chapter 6)
d• variable of integration (Chapter 2),

infinitesimal change (Chapter 4)
p probability density function (Chapter 2)
a coefficient (Chapter 2)
a,b parameters of IHO S44 standards for depth uncertainty

(Chapters 3 and 4), parameters for a linear relation
with migration (Chapters 4 and 5)

c covariance (Chapters 2 and 3),
a calibration constant (Chapters 4 and 5)

c(0) variance, sill (Chapter 2)
d depth of the sea floor (Chapters 2 and 3)
e measurement error (Chapters 2 and 3)
f a function (Chapter 2), a factor (Chapter 3)
h distance (Chapters 2, 3 and 4)
i an iteration (Chapter 3)
i,j indices (Chapter 2)
k basis function exponent (Chapter 2),

critical value (Chapter 3), cofactor index (Chapter 3)
l,m grid indices (Chapter 2)
ℓ wavelength of a covariance function (Chapter 2)
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m spatial trend (Chapters 2 and 3)
p,q positions (Chapter 2)
q test quotient (Chapter 3)
r residual depth (Chapters 2 and 3)
s scale factor (Chapter 2)
t a moment in time (Chapter 3)
u parameter (Chapters 2, 3 and 4), flow velocity (Chapter 4)
v variability (Chapter 2), parameter of an extension (Chapter 3),

sound velocity (Chapter 4)
w weight factor (Chapter 2)
x,y horizontal directions (Chapters 2 and 3)
z vertical direction (Chapters 2 and 3)

Greek

∆• difference operator (Chapters 2 and 3)
Σ• summation operator (Chapters 2 and 3)
α probability of incorrectly accepting an alternative

representation: “level of significance” (Chapter 3)
β probability of incorrectly accepting the original

representation (Chapter 3)
γ variogram (Chapter 2),

probability of correctly accepting an alternative
representation: “power of a test” (Chapter 3)

γ(0) nugget (Chapter 2)
θ azimuth East of North (Chapter 2)
ϑ azimuth increment (Chapter 2)
κ wave number (Chapters 2 and 3)
λ noncentrality parameter (Chapter 3)
ξ crest position (Chapter 3)
π 3.14159268 · · · (Chapter 2)
ρ correlation coefficient (Chapters 4, 5 and 6)
σ standard deviation (Chapters 2, 3, 4 and 5)
χ2 chi-squared distribution function (Chapter 3)
ψ slope (Chapter 3)
∇ gradient (Chapter 2)
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Augmentations

Superscripts
•
T transposed (Chapters 2 and 3)

•
(M) for a MESR (Chapter 6)

•
(S) for a SLDR (Chapter 6)

•
(a) adapted (Chapters 4 and 5)

•
(b) seabed level (Chapter 3)

•
(c) for ordinary kriging, for which the trend is constant

(Chapter 2)

•
(c), •

(s) multiplied by a cosine or sine function (Chapter 3)
•
(c), •

(v) for covariance and variance (Chapter 3)

•
(d) dominant (Chapter 3)

•
(e) for the measurement error (Chapter 3)

•
(g) for a gradient (Chapter 2), for a grid (Chapter 5)

•
(h) in the horizontal directions (Chapters 2 and 3)

•
(i) inflection of a function (Chapters 2 and 3)

•
(k) kriging (Chapters 2 and 3)

•
(l) measured, for location (Chapter 2)

•
(m) morphological (Chapters 2 and 3)

•
(n) grid nodal (Chapter 2)

•
(o) original (Chapter 2), overall (Chapter 3)

•
(p) aligned with the principal directions (Chapter 2),

predicted (Chapters 4 and 5)

•
(r) realized (Chapter 2)

•
(s) scaled (Chapter 2), for spatial variation (Chapters 4 and 5)

•
(t) temporal (Chapter 3), for the survey tracks (Chapter 5)

•
(u) for universal kriging, for which the trend is variable (Chapter 2)

•
(v) in vertical direction (Chapters 2 and 3)

•
(x), •

(y) aligned with direction of highest, lowest variability
(Chapter 2)

•
(0), •

(1), •
(2) spatial level of a representation (Chapter 3)

•
(a) an alternative spatial representation (Chapter 3)

Subscripts
•h in horizontal direction (Chapter 4)
•max, •min maximum, minimum (Chapters 2, 3 and 5)
•new, •old new, old (Chapter 3)
•pl for the plane (Chapter 3)
•ref reference value (Chapter 3)
•sw for the sand wave (Chapter 3)
•tr a representation with a trend (Chapter 3)
•v in vertical direction (Chapter 4)
•0 limit towards zero (Chapters 2 and 3),
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for the original temporal representation (Chapter 3)
•1 for one degree of freedom (Chapter 3)
•1, •2, · · · for a specific value of a subscript

(Chapters 3, 4 and 6)
•2.5%, •97.5% lower and upper limit of 95% confidence interval (Chapter 6)
•M with size equal to the number of measurements (Chapter 6)
•P with size equal to the number of positions (Chapter 6)
•S for the last survey (Chapter 6)
•S+1 for expected next survey (Chapter 6)
•a an alternative temporal representation (Chapter 3)
•d for depth (Chapters 3, 4 and 5)
•2d to and from the sea floor (Chapter 4)
•i residual component index (Chapter 2),

iteration index (Chapter 3),
variance component index (Chapter 4)

•k basis function index (Chapter 2), cofactor index (Chapter 3)
•m, •n a grid node (Chapter 2)
•m for the morphological trend (Chapter 3)
•p, •q a position (Chapters 2 and 3)
•r for residual depth (Chapter 3)
•s for a survey (Chapter 3)
•u for the parameters (Chapter 3)
•x, •y aligned with direction of highest, lowest variability

(Chapters 3 and 4)
•α for a set level of significance (Chapter 3)
•ξ for migration (Chapters 4 and 5)

Other
• average (Chapters 2 and 6)
•̇ trend (Chapter 3)
•̂ least-squares estimate (Chapter 3)
•
∗ within a specified interval (Chapter 2)

•
′ with respect to a reference value (Chapter 3)

•
+ extended with a value for the next survey (Chapter 6)

•
+, •

− in positive and negative direction of the x-axis (Chapter 4)
•
↓ for an SBES survey (Chapter 6)

•
� for an MBES survey (Chapter 6)

• stochastic (Chapters 2 and 3)
•[•] function of a discrete signal (Chapter 2)
•(•) function of a continuous signal (Chapters 2 and 3)
•{•} statistical operator of a variable (Chapters 2 and 3)
‖•‖ magnitude operator (Chapters 2 and 3)
|•| minimal detectable value (Chapter 3)
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